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1.  Introduction

This article provides an overview of currently available quantum development software and tools
for Quantum Annealers (QAs), for gate-based quantum computers, comprising both Noisy
Intermediate-Scale (NISQ) quantum computers and Fault-Tolerant Quantum Computers (FTQCs),
and for Measurement-Based Quantum Computing (MBQC) quantum computers. This overview is
neither complete nor very detailed in the descriptions of the various component types and
associated products from quantum computing vendors and other sources, given the very large
number of such artifacts currently available and the fact that these artefacts are continuously
evolving (mostly by adding new features or supporting new quantum computing platforms).
Furthermore, in many instances, the descriptions provided in this article only relate to gate-based
quantum computing.

Note
It is assumed that the reader has reasonable knowledge of classical computing and some basic knowledge
of quantum computing (as for example included in the article ‘Quantum Computing Explained’ published by
the NOREA Taskforce Quantum Computing).

Quantum computers are complex systems that should typically not be directly handled by
quantum software developers. Instead, to take advantage of the power of these devices, a stack
of software layers that approximates the quantum computer to these developers is required
(Figure 1.1 and Figure 1.2).

Figure 1.1: Analogue quantum computing stack
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Figure 1.2: Gate-based quantum computing stack

Programming for quantum computers is based on very different concepts than programming for
classical computers, and as such requires new computing languages and associated development
software and tools1. It is however important to note that most of these are in fact hybrid classical-
quantum artefacts, where the quantum computer is considered to constitute a so-called “quantum
accelerator” (a concept similar to GPUs and AI accelerators). This in particular the case for cloud-
based quantum computing and for hybrid classical-hybrid HPC computing environments.

When developing quantum applications, the problem to be solved by the use of quantum
computing must be determined first. After the problem has been analysed and properly
understood, the next step is to design the quantum algorithm and then design and specify the
corresponding quantum circuit, i.e. the set of qubits, the sequence of operations (quantum gates)
to be performed on these qubits, and the qubit measurements yielding the (classical) outcome of
the quantum computation. Many different quantum software development tools can be used for
this purpose. Most of these tools can produce the source code of the quantum circuit according
to one of the available quantum programming languages (see Chapter 2).

After the quantum source code has been obtained, it is usually integrated into a classical program
by embedding it in a program developed with a quantum programming language derived from a
classical programming language.

1 In contrast to the early stages of classical computing, software for quantum computers has already considerably
evolved, because of the existence of personal computers, remote (cloud) access, open-source communities etc., none
of which were available during the early stages of classical computing.
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The resulting program source code must then be compiled into machine language for execution
on the physical classical/quantum computing platform. There are two main options for doing this:

1. Execute the compiled code on a local (on-premises) classical/quantum computer system or
on a quantum emulator running on a local classical computer (when a quantum circuit has
been designed, it is usually first evaluated on a quantum circuit emulator, which provides the
quantum computing results in different formats, e.g. histograms with the probabilities of
measuring each of the possible states of the qubits).

2. Execute the compiled code using the Quantum Computing-as-a-Service (QCaaS) service
provided by a quantum computing vendor or service provider. In this case, the most common
option is sending the source code or the compiled quantum machine code to a remote
quantum service, where it is enqueued for compilation and/or execution on the
classical/quantum computing infrastructure or on a quantum emulator provided by the vendor
or service provider. After execution of the quantum program, a report with the results of the
computation is sent back to the requestor.

The verification and certification of quantum algorithms and the result of their execvution is an
important topic. Verification deals with verifying that the code will run as expected (it responds
to the question: are we building product the product right?). Validation concerns the program
output and making sure it works as planned (it responds to the question: are we building the right
product?).

Figure 1.3: Quantum software quality assurance

A quantum circuit is not easy to debug and it will certainly require new debugging tools and
approaches because many quantum code bugs are “quantum” in nature and are not easy to spot
with traditional methods.

For the moment, simple quantum circuits can be analysed and debugged with a quantum emulator
running on a classical computer, to understand how the qubit register vector state evolves step-
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by-step. But when quantum computers will be available with a large number of qubits2, beyond
any classical emulation capacity, other means will have to be used.

Generally, quantum developers work in a user-friendly environment, in which a quantum circuit
is coded or designed with drag-and-drop visual tools. Such high-level quantum source code is
not yet directly executable by the quantum processor and must first be compiled through a
compiler that adapts and optimises the quantum circuit to the quantum processor’s hardware
characteristics and its supported set of qubits, quantum gates (operations) and qubit
measurements. This is sometimes done by first converting the quantum circuit’s high-level source
code to an equivalent intermediate representation in a low-level quantum assembly language,
and then compile it into an executable quantum program.

The current state of play in quantum computer software includes many products in development
both commercially and academically, several of them being open-source efforts. With the recent
industry push toward larger quantum computers and prototypes (including availability on public
clouds for broad use), there is an increased awareness of the need for full-stack quantum
computing software in order to encourage usage and nurture an ever increasing quantum
developer community. Thus, it is reasonable to expect that quantum programming languages and
software ecosystems will receive considerable attention and may see significant changes in
coming years.

2 Current “guestimates”: 50 to 100 qubits.
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2. Quantum programming languages and associated tools

Several levels of abstraction are involved in a typical full quantum software/hardware stack (see
Figure 2.1 for an example) and therefore, several layers of quantum development software and
tools can be distinguished.

Figure 2.1: Quantum software/hardware stack (source: Fact Based Insight)

High-level quantum programming languages and high-level quantum compilers enable a
developer to program quantum algorithms or quantum circuits, while shielding the developer
from the details of the underlying quantum hardware platform. A distinction can be made between
quantum algorithm programming languages and quantum circuit programming languages
(several high-level quantum programming languages support both).

Note
In stark contrast with classical computing where bits are only used at the lowest levels of abstraction,
quantum computing is based on qubits and operations on qubits (quantum gates) at all levels of abstraction
(see Figure 2.2).

Figure 2.2: Computing language abstraction levels (source: Olivier Ezratty 2023)
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Low-level quantum programming languages (aka quantum assembly languages) and low-level
quantum compilers (aka quantum assemblers) enable a developer to specify quantum circuits in
detail, interacting directly with a specific quantum hardware platform by providing the means to
specify the physical instructions necessary to execute the quantum circuit.

Note
It is not always obvious whether a quantum computing language is to be classified as high-level or low-level.
Several quantum programming languages could fit in both categories, depending on one’s definition of what
is “low” and what is “high”3.

Quantum programming languages are either imperative languages, declarative languages or
functional languages:

 Imperative programming is a programming paradigm that specifies statements to change a
program's state. In much the same way that the imperative mode in natural languages
expresses commands, an imperative program consists of commands for the computer to
perform. Imperative programming focuses on describing how a program operates step-by-
step, rather than on high-level descriptions of its expected results.

 Declarative programming is a programming paradigm that expresses the logic of a
computation without describing its control flow. Many languages that apply this style attempt
to minimise or eliminate side effects by describing what the program must accomplish in
terms of the problem domain, rather than describing how to accomplish it as a sequence of
the programming language primitives (the “how” being left up to the language's
implementation).

 Functional programming is a programming paradigm where a program is constructed by
applying and composing functions without describing the program's control flow. Function
definitions are trees of expressions that map values to other values, rather than a sequence
of imperative statements which update the running state of the program.

Quantum compilers translate quantum program source code into some kind of “quantum machine
instructions”. These compilers first transform the universal quantum gates supported by the
quantum programming language into the particular physical quantum gates supported by the
quantum computer (the “basis gates” aka “native gates”)4 and then into the sequences of
(electronic or photonic) control pulses operating on the physical qubits of the quantum processor
(Figure 2.3).

3 This is not unlike the geographical notions of “high” and “low”. Very few Europeans, except maybe the Danish, would
for example classify the Dutch Cauberg hill as a mountain like Dutchmen do.

4 This process is often called “transpilation”.
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Figure 2.3: Quantum program compilation (source: Bert de Jong 2019)

Quantum compilers typically provide for optimisation of the generated quantum program source
code. They often also provide advanced features such as reducing the number of quantum gates
to create shallower quantum circuits, integration of Quantum Error Correction (QEC) code or
distribution of the quantum computations across multiple QPUs.

Note
In contrast to classical computing, there is no such thing as an Operating System (OS) for quantum
computers, though a few vendors use this term to denote the qubits control subsystem, which is however
very different from a classical OS since it is inseparable from the QPU subsystem (the quantum computer
being the combination of both subsystems). On the other hand, one could argue that the “orchestration” part
of the qubits control software (which generally runs on a classical computer) is the quantum computer’s
operating system, because it has a few things in common with a classical OS.

Some high-level quantum compilers generate intermediate quantum program source code (aka
quantum assembly code) that is then input to a low-level quantum compiler (aka quantum
assembler) to generate executable quantum machine code.

Quantum scripting languages are used to program quantum algorithms or quantum circuits in
“text mode”. Most quantum scripting languages are able to combine classical computing
programming with quantum computing programming. Many of them are implemented as
quantum extensions of classical computer languages such as C, C++, C#, Java, PHP and Pyhton.

Quantum graphical programming tools provide the means to visually define the sequence of
quantum gates and qubit measurements for the specification of a quantum circuit (this
functionality is embedded in many quantum scripting languages). Such tools can be used to
specify relatively simple quantum circuits, which should fine for the current NISQ generation of
quantum computers.

Quantum graphical programming tools can sometimes emulate a quantum computer and visualise
the status of its qubits with either Bloch spheres (Box 2.1), qubit register states (Box 2.2) or
Density Matrixes (DMs, see Box 2.3).
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The Bloch sphere is a geometrical representation of the pure quantum state space of a two-level
quantum mechanical system, e.g. a qubit. The Bloch sphere has antipodal points corresponding to a
pair of mutually orthogonal quantum state vectors. The north and south poles of the Bloch sphere
correspond to the standard basis vectors |0⟩ and |1⟩ of the qubit.

Box 2.1: Bloch sphere

In a quantum computer, qubits are organised in registers, like the bit registers in today's classical
processors but not quite the same though. One key difference is that a quantum computer has only
one register and not many as current classical processors.

The most important difference between a qubit register and a classical bit register is the amount of
information that can be manipulated simultaneously. In classical computers, the bit registers store
bitstrings, integers or floating-point numbers on which elementary logical or arithmetic operations

are performed. In contrast, a register of n qubits is a vector in a 2n dimensional space of complex
numbers. These complex numbers are the amplitude of each computational quantum state and the
total of their squared norms equals 1 since these are probabilities. Hence the dimensionality of a
n-qubit register is exponentially larger than that of a n-bit register.

Box 2.2: Qubit register

A Density Matrix (DM) is a matrix that describes the quantum state of a quantum system. It allows for
the calculation of the probabilities of the outcomes of any measurement performed upon this system.

A DM is a generalisation of the more usual quantum state vector or quantum wavefunction: while
these can only describe a “pure” quantum state, a DM can also describe a “mixed” quantum state, into
which the pure quantum state “decoheres” by interactions with the environment (this is for example
the case with “noisy” qubits).

Box 2.3: Density Matrix (DM)

See Appendix A for a brief description of a representative selection of quantum programming
languages.

Due to the difficulty of building quantum computers and the limited access to the few real
quantum computers currently available, a growing body of quantum emulators has emerged to
assist in the tasks of designing quantum algorithms and associated quantum circuits. When new
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quantum algorithms are being developed, it is generally advisable to conduct the initial proof-of-
concept validation with a quantum emulator.

Note
Quantum emulators are often called “quantum simulators” but this is not the right term (Box 2.4) and it
creates confusion with quantum simulator systems, i.e. analogue quantum computers used for simulating
quantum mechanical systems5 (Figure 2.4). In this article, the term “quantum emulator” is used, except in
cases where the word “simulator” is part of the name of a software artefact.

Simulation is the imitation of the operation of a system over time and is based on a model which
represents its key characteristics and behaviours. Simulation is used for various purposes, e.g. testing,
optimising, performance tuning, etc. of technology being designed, the study of physical systems
based on scientific modelling of these systems, etc.

Emulation is a technique that enables one system (the emulator) to behave (almost) exactly like
another system (the target). The Church-Turing thesis implies that, in theory, any computing
environment can be emulated within any other computing environment, assuming memory limitations
are ignored.

Box 2.4: Simulation versus emulation

Figure 2.4: Quantum emulation vs. quantum simulation

5 These are the quantum computers that Richard Feynman had in mind when he introduced the term “quantum
computer” in 1981.
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There are several types of quantum emulators, including:

 Density Matrix (DM)-based: using DMs for representing mixed quantum states (see Box 2.3),
which allows for the emulation of imperfect qubits (i.e. qubits affected by noise and
decoherence) but is also the most resources-hungry emulation method.

 State Vector (SV)-based: representing pure quantum states by quantum state vectors, which
only allows for the emulation of perfect qubits (i.e. qubits that are not affected by noise and
decoherence) but is far less resources-hungry.

 Tensor Network (TN)-based: using TN compression techniques, which significantly reduces
the complexity of the emulation software and also allows for the distribution of the emulation
program execution over a cluster of classical computing nodes.

See Appendix B for a brief description of a representative selection of quantum emulators.

The amount of computing resources required for the emulation of a quantum circuit heavily
depends on the number of qubits to be emulated and also on the depth of the quantum circuit
(i.e. the number of quantum gates). The main limitation of classical computers for quantum circuit
emulation is the amount of available computer memory (RAM) rather than CPU capacity.

Resource estimators are software tools designed to estimate the quantum computing hardware
resources using as inputs a given algorithm and the various hardware characteristics. At the
moment, there are only a few of these tools available:

 Google developed the Cirq-FT tool;

 Microsoft developed a tool to estimate the qubit numbers, T-gate count and execution time
for a given quantum algorithm targeting an FTQC platform;

 USC, UCSB and Berkeley developed the QuRE tool;

 Zapata Computing, Aalto University, IonQ, the University of Technology Sydney and the
University of Texas at Dallas developed BenchQ, an open-source resource estimation tool for
chemistry industry quantum computing applications (part of DARPA Quantum Benchmarking
Program Phase II).

Quantum computer benchmarking tools, which are used to evaluate and compare existing
quantum computers. These benchmarking tools already abound and are very diverse; they are not
described in this article.

Quantum Software Development Kits (QSDKs) provide collections of tools to develop, test and
execute quantum programs. They provide the means to prepare the quantum circuits to be run
using either on-premise or cloud-based (QCaaS)  quantum computers and quantum emulators.

See Appendix C for a representative selection of prevalent QSDKs.
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Many quantum software development tools are open-sourced and free to install and use, their
differentiation being the available support, documentation and tutorials. In practice, however,
commercial quantum application developers typically don’t use these tools. Instead, they use the
quantum languages and quantum computing software development platforms provided by
commercial quantum computing vendors (see Chapter 3). They become thus locked into these
vendors’ so-called "full-stack" approaches, which may be open-sourced in principle but are often
proprietary in practice.
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3. Quantum computing vendor software development platforms

3.1. Introduction

Quantum software development platforms from “incumbent” quantum computer vendors are
mostly focused on their own quantum computers (see Figure 3.1 for a few examples), while the
quantum software development platforms from “full-stack” quantum software vendors (often
start-ups) are more open, more flexible and support multiple quantum computer platforms and
associated software environments (see Figure 3.2 for a few examples).

Figure 3.1: Quantum computer vendor software development platforms

Figure 3.2: Full-stack quantum software vendor software development platforms



Quantum Software Development Tools

Page 16 of 74

Microsoft is an odd man out because they have not yet succeeded in building their own
(topological qubit-based) quantum computer, and because their Azure Quantum cloud service
provides access to competitors’ quantum computing platforms (see § 3.7).

To some extent, this is also the case for Google Quantum AI, as their Google Cloud Marketplace
provides access to competitors’ quantum computing platforms, while access to Google Quantum
AI’s own quantum computers is currently only granted to selected parties (see § 3.4).

The quantum software company Cambridge Quantum Computing (CQC) merged in 2021 with the
quantum computer manufacturer Honeywell Quantum Solutions (HQS) to form Quantinuum. This
explains why Quantinuum’s quantum software development platform (see § 3.8), which was
developed by CQC, differs from that of other “incumbent” quantum computer vendors.

The following sections provide a brief description of prevalent quantum computing vendor
software development platforms (in alphabetical order of vendor names).

3.2. Amazon

Amazon Braket (figure 3.3) has been designed to be quantum hardware platform agnostic,
removing the need to use different quantum programming tools for each type of quantum
computer.

Amazon allows users to bring their own quantum development environment or to use Amazon
Braket. Also, Amazon Braket natively supports PennyLane.

Figure 3.3: Quantum software development with Amazon Braket SDK (source: AWS)

AWS Marketplace provides AWS customers with QCaaS access to quantum computing technologies
from multiple quantum hardware providers for quantum software development using its Amazon
Braket SDK:

 |QuEra⟩: access to Aquila neutral atom qubit-based quantum computers;
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 D-Wave Systems: access via D-Wave System’s Leap QCaaS service (see § 3.3) to D-Wave
2000Q and Advantage superconducting flux qubit-based quantum annealers and to D-Wave
System’s hybrid solvers;

 IonQ: direct access or access via IonQ’s Quantum Cloud (see § 3.6) to Harmony, Aria and Forte
trapped-ion qubit-based quantum computers;

 OQC: access to superconducting coaxmon qubit-based quantum computer;

 Quantinuum: access to H1 and H2 trapped-ion qubit-based quantum computers;

 Rigetti Computing: access to Aspen-M Series superconducting flux qubit-based quantum
computers;

 Xanadu: access to X-Series Measurement-Based Quantum Computing (MBQC) quantum
computers.

Amazon Braket also provides access to a choice of quantum emulators, including the free local
emulator in the Amazon Braket SDK and three fully managed on-demand emulators: State
Vector 1 (SV1), Density Matrix 1 (DM1) and Tensor Network 1 (TN1).

Amazon Braket Hybrid Jobs provides  additional flexibility to use embedded emulators, designed
with high performance and ultra-low latency in mind. These emulators can be embedded within
the same job container as the quantum application code. Amazon Braket Hybrid Jobs supports
embedded emulators from PennyLane or the option to embed one’s own circuit emulator as a
container (using the “bring-your-own-container” feature).

3.3. D-Wave Systems

D-Wave Systems’ Ocean (Figure 3.4) is a Python-based quantum Integrated Development
Environment (IDE).

Figure 3.4: D-Wave’s quantum software environment (source: D-Wave Systems)
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D-Wave System’s Leap real-time quantum cloud service (QCaaS) provides real-time access to its
D-Wave 2000Q and Advantage quantum annealer platforms, constrained quadratic model solver,
hybrid solvers, Ocean QSDK, live code, demos and learning resources.

D-Wave Systems’ quantum annealers can also be accessed via the AWS Marketplace (see § 3.2).

3.4. Google Quantum AI

Google Quantum AI’s Cirq (Figure 3.5) is an open-source Python software library. Cirq is designed
to emulate universal gate quantum computers and also provides the facility to execute a program
on a quantum computer.

Figure 3.5: Google Cirq quantum software framework (source: M. Broughton et al.)

The Cirq ecosystem supports a vast set of external libraries that can be utilised for application
specific development, such as:

 TensorFlow Quantum (TFQ): a hybrid quantum-classical Quantum Machine Learning (QML)
library for rapid prototyping of hybrid quantum-classical Machine Learning (ML) models. The
PennyLane Cirq plugin integrates the Cirq quantum computing platform with PennyLane’s
QML capabilities.

 OpenFermion: supports the creation of quantum algorithms for chemistry and material
sciences.

 Forge: supports the creation of quantum algorithms for data science, finance, etc.

 ReCirq is a library of research experiments using Cirq. The ReCirq repository contains code
for Google’s flagship experiments, enabling one to reproduce and extend cutting edge
quantum computing research.

Google Cloud Marketplace provides QCaaS access via Google Cloud to IonQ trapped-ion qubit-
based quantum computers and to Cirq, qsim and PyQVM quantum emulators.
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Quantum Computing Service (QCS) gives customers access to Google Quantum AI's FoxTail,
Bristlecone6 and Sycamore transmon qubit-based quantum computers. Programs that are written
in Cirq can be sent to run on a quantum computer in Google’s quantum computing lab in Santa
Barbara, CA. No public access to the service is available at this time, access is currently only
granted to those on an approved list.

3.5. IBM Q

The main elements of IBM Q’s quantum software architecture (Figure 3.6) are:

 Model Developers and Algorithm Developers for building quantum applications: includes
Machine Learning, Natural Science and Optimization;

 Quantum Serverless: includes intelligent orchestration, circuit knitting toolbox and circuit
libraries (a collection of well-studied quantum circuits);

 Kernel Developers: Circuits (i.e. quantum circuit development using Qiskit) and Qiskit Runtime
(cloud service that runs a Qiskit program remotely as a process, passing the input from the
user, and handling the connectivity between the Qiskit program, the user and the QPU);
including functionality for:

- dynamic circuits: mid-circuit measurements that affect the control flow of quantum
gate execution later in the quantum circuit (aka feed-forward operations);

- threaded primitives;

- error suppression and mitigation;

- error correction;

 System Modularity: underlying IBM Q QPUs and quantum emulators.

IBM Q offers several quantum emulators. The ibm_qasm_simulator emulates up to 32 qubits as if
it was a real quantum device (including measurement pseudo-randomness) and also supports
noise models injection. The Qiskit Aer emulators provide access to a 32 qubits quantum state
vector-based emulator, as well as 63- and 100-qubit emulators, and also a 5,000-qubit stabilizer
mode (Clifford gate group only7) emulator, with some restrictions on the quantum gate sets.

6 However, Google’s Bristlecone quantum computer never saw the day of light!

7 Quantum circuits using only quantum gates in the Clifford group can be emulated in polynomial time on a classical
computer according to the Gottesman-Knill theorem.
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Qiskit Aqua provides a library of quantum algorithms and components to build quantum
applications and leverage NISQ quantum computers.

Figure 3.6: IBM Q Quantum software roadmap (source: IBM Q)

IBM Q provides the following options for QCaaS access to its quantum computers:

 Open Plan via IBM Quantum: free unlimited access to quantum simulators and free limited
access (up to 10 minutes a month) to 7-qubit and 127-qubit Eagle IBM Q QPUs;

 Pay-As-You-Go Plan via IBM Cloud: paid access to quantum simulators, 27-qubit Falcon and
127-bit Eagle QPUs;

 Premium Plan via IBM Cloud: paid access to quantum simulators, 27-qubit Falcon, 127-bit
Eagle and 433-bit Osprey QPUs based on reserved capacity.

IBM Q also provides a Dedicated Service powered by a dedicated co-hosted quantum computer
that is managed by IBM Q.

3.6. IonQ

IonQ’s cloud quantum computing platform Quantum Cloud allows customers to run quantum
programs remotely (QCaaS) on IonQ’s quantum hardware. With access to IonQ QPUs, noisy
emulators, as well as an ideal state emulator, Quantum Cloud supports all stages of quantum
algorithm development in one seamless API. Quantum Cloud is compatible with major QSDKs
such as Cirq, PennyLane, ProjectQ, QDK, Qiskit and TKET.

Quantum Cloud can be accessed via the AWS Marketplace (see § 3.2), Google Cloud Marketplace
(see § 3.4) and Azure Quantum Cloud (see § 3.7). IonQ also provides selected partner
organisations with direct access to its cloud quantum computing platform.
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Quantum programs are typically submitted via IonQ’s API as language-agnostic JSON, but cQASM,
OpenQASM and Quipper formats are also supported. One can simply use curl on the command
line, but JavaScript, Python or a fully-featured SDK is usually preferred.

3.7. Microsoft

Microsoft’s Quantum Development Kit (QDK) interfaces with the Azure Quantum service for
building quantum programs that run on quantum hardware and quantum emulators that are
available in Azure Quantum (Figure 3.7 and Figure 3.8). QDK is built into the Azure Quantum
portal, where one can develop programs using the free hosted Jupyter Notebooks.

QDK includes the quantum programming language Q# and supports Cirq and Qiskit. It also
contains some components that can be used standalone, independently from the Azure Quantum
service:

 Q# language and quantum libraries (all open-source);

 quantum emulators that emulate current and future quantum machines, to run and debug
quantum algorithms written in Q#;

 extensions for Visual Studio (VS) and Visual Studio Code (VSC) and integration with Jupyter
Notebooks.

Azure Quantum is Azure’s cloud quantum computing service (QCaaS). It supports a diverse set of
quantum solutions and technologies. Azure Quantum ensures an open, flexible, and future-
proofed path to quantum computing that allows running quantum programs (Cirq, Q# or Qiskit)
on multiple quantum hardware platforms.

Azure Quantum supports quantum computers from IonQ, Pasqal, QCI, Quantinuum and Rigetti
Computing. Azure Quantum also supports various quantum emulators: IonQ’s GPU-accelerated
quantum emulator, Quantinuum’s H1 and H2 emulators, and Rigetti Computing’s PyQVM
emulator.

Figure 3.7: Quantum program stages and corresponding QDK tools (source: Microsoft)
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Figure 3.8: Azure Quantum workflow (source: Microsoft)

3.8. Quantinuum

TKET (Figure 3.9) is Quantinuum's software for developing, optimising and executing platform-
agnostic quantum circuits.

Quantinuum offers access to their trapped-ion qubit-based quantum computers and emulators,
accessible via their API and User Portal (QCaaS). Users are able to submit jobs that run remotely
on Quantinuum’s quantum systems from a local Python development environment.

The following PyTKET backends are available: AQT QPUs and emulators, Cirq emulators, IBM Q
QPUs and emulators, IonQ QPUs, IQM QPUs and emulators, ProjectQ emulator, Rigetti Computing
QPUs, and Quantinuum H1-1 and H1-2 QPUs and emulators. Quantinuum quantum emulators
include quantum state vector-based emulators, density matrix-based emulators and other
specialised quantum emulators.

Quantinuum quantum computers and emulators can also be accessed via AWS Marketplace (see
§ 3.2) and Azure Quantum (see § 3.7).

Figure 3.9: TKET quantum software architecture (source: Quantum Zeitgeist)
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3.9. Rigetti Computing

Rigetti Computing’s Forest (Figure 3.10) is a set of software tools that allows to write quantum
programs in Quil, then compile and run them via Quantum Cloud Services (QCS) or a quantum
emulator.

Figure 3.10: Forest quantum software stack (source: Rigetti Computing)

Forest comprises  the following components:

 pyQuil: Python library for building and executing programs written in the Quil quantum
programming language;

 quilc: optimising Quil compiler;

 PyQVM: quantum circuit emulator.

Grove is an open-source Python library containing quantum algorithms that use the quantum
programming library pyQuil and the Rigetti Forest toolkit.

Rigetti Computing’s quantum computers can be accessed via its QCS (QCaaS) and can also be
accessed via the AWS Marketplace (see § 3.2), Azure Quantum (see § 3.7), Strangeworks QC and
the Zapata Computing Orquestra platform (see § 3.11).

Rigetti Computing is also promoting Quantum Programming Studio, a web-based GUI designed
to allow developers to construct quantum algorithms and obtain results by simulating directly in
the browser or by executing on real quantum computers.



Quantum Software Development Tools

Page 24 of 74

3.10. Xanadu

Xanadu’s Strawberry Fields is a full-stack Python library for constructing, simulating, and
executing programs on photonic quantum computers according to the Continuous Variable (CV)
model of quantum computing, in which the basic information-processing unit is the qumode
(which uses a continuum of values to describe its quantum state) instead of the qudit (which uses
a discrete set of values to describe its quantum state).

The Strawberry Fields software stack is separated into two main pieces: user-facing front-end
components and lower-level backend component (Figure 3.11).

Figure 3.11: Strawberry Fields quantum software stack (source: Xanadu)

The front-end encompasses the Strawberry Fields API for building high-level quantum
applications and the Blackbird quantum assembly language for designing quantum circuits. These
quantum circuits are then linked to a back-end via a quantum compiler engine.

The back-end targets one of the included quantum computer emulators (Fock/NumPy,
Fock/TensorFlow or Gaussian/NumPy) or a CV photonic quantum processor (such as Xanadu
X-Series).

Xanadu’s Jet and Lightning quantum emulators integrates seamlessly with PennyLane, providing
techniques for Quantum Machine Learning (QML) optimisation.

High-level quantum computing applications can be built by leveraging the Strawberry Fields
front-end API. Examples include the Strawberry Fields Interactive website, the Quantum Machine
Learning Toolbox (for streamlining the training of variational quantum circuits), and SFOpenBoson
(an interface for the OpenFermion library).

Strawberry Fields can be accessed through Xanadu Cloud (QCaaS) or can be installed on a local
computer.
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3.11. Zapata Computing Holding Inc.

Zapata Computing’s Orquestra quantum development platform (Figure 3.12) is used to build and
deploy quantum generative AI applications.

Through partnerships with leading quantum computer manufacturers, Zapata Computing has
developed a quantum software development platform that enables building quantum solutions
for solving complex computational problems in optimisation, Quantum Machine Learning (QML)
and simulation across a range of industries.

Figure 3.12: Orquestra quantum software development platform (source: Zapata AI)
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Appendix A – Overview of quantum programming languages

This appendix provides a brief description (in alphabetical order) of a representative selection of
quantum programming languages (low-level quantum assembly languages and high-level
quantum programming languages) for quantum annealing, gate-based quantum computing and
Measurement-Based Quantum Computing (MBQC).

A.1 Quantum assembly languages

Note
The quantum assembly languages described below are imperative languages.

Blackbird
Blackbird is a quantum assembly language created by Xanadu for developing quantum programs
for photonic qubit-based quantum computers. Blackbird is built into Xanadu’s Strawberry Fields
QSDK but also exists as a separate open-source Python package.

Blackbird is a Domain Specific Language (DSL) for the Continuous Variable (CV) quantum
computation model. With a well-defined Extended Backus-Naur Form (EBNF) grammar (Box A.1),
and both Python and C++ parsers available, Blackbird provides operations that match the basic
CV quantum states, quantum gates and qubit measurements, and maps directly to low-level
quantum hardware instructions. Blackbird’s abstract syntax keeps a close connection between the
code and the quantum operations that it implements, which is modelled after that of ProjectQ (but
specialised to the CV setting).

Backus–Naur Form (BNF) is a meta-syntax notation for context-free grammars used to describe the
syntax of computer programming languages, document formats, instruction sets and communication
protocols. Many extensions and variants of the original BNF notation are in common use, some of
which are exactly defined, including Extended Backus–Naur Form (EBNF) and Augmented Backus–Naur
Form (ABNF).

Box A.1: Backus-Naur Form (BNF)

Cirq
Cirq is a low-level quantum programming language that is part of Google Quantum AI’s Cirq
QSDK. It is an open-source Python software library developed by Google Quantum AI for
specifying, manipulating and optimising quantum circuits, and then running them on quantum
computers and quantum emulators. Cirq provides useful abstractions for dealing with today’s
NISQ quantum computers, where use of specific hardware features is vital to achieving state-of-
the-art results.
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Figure A.1: Example Cirq source code (source: Google Quantum AI)

cQASM
common Quantum Assembly Language (cQASM) is a hardware-agnostic quantum assembly
language which guarantees the interoperability between the quantum compilation and emulation
tools. It was developed at TU Delft. A cQASM program declares the classical bits and qubits,
describes the operations (quantum gates) on those qubits and the qubit measurements needed
to obtain the classical result.

Figure A.2: Example cQASM source code: subset of Grover’s quantum algorithm
(source: Quantum Inspire)
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eQASM
executable Quantum Assembly Language (eQASM, see Figure A.3) is an intermediate quantum
machine language from TU Delft and its subsidiary QuTech. It sits in between high-level
programming tools and the quantum processor. It is a compiled language, hence the "e" for
“executable”. The compiler manages the dependencies with hardware implementation specifics.

Figure A.3: eQASM architecture (source: QuTech)

An eQASM program can consist of interleaved quantum instructions and auxiliary classical
instructions. Since the host CPU can provide classical computation power, auxiliary classical
instructions are simple instructions to support the execution of quantum instructions.

Figure A.4: Example eQASM source code (source: QuTech)
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OpenQASM
Open Quantum Assembly Language (OpenQASM, see Figure A.5) is a quantum programming
language designed for describing quantum circuits (representing quantum algorithms) for
execution on gate-based quantum computers. It is designed to be an Intermediate Representation
(IR) that can be used by higher-level compilers to abstract from the quantum hardware details
and allows for the description of a wide range of quantum operations (quantum gates), as well as
classical feed-forward flow control based on qubit measurement outcomes.

IBM Q released an open-source reference source code implementation for OpenQASM as part of
its Qiskit QSDK to use along with their IBM Quantum Composer. You can either use the IBM
Quantum Composer to create quantum programs in OpenQASM or you can use IBM Quantum
Composer to convert Qiskit source code to OpenQASM code.

Figure A.5: OpenQASM architecture (source: IBM Q)

OpenQASM includes a mechanism for describing explicit timing of instructions, and allows for the
attachment of low-level definitions to quantum gates for tasks such as calibration. Compilers for
OpenQASM are expected to support a wide range of classical operations for compile-time
constants, but the support for these operations on runtime values may vary between
implementations. Furthermore, implementations of the language may not support the full range
of data manipulation described in the specification.
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Figure A.6: Example OpenQASM source code: adding two 4-bit numbers (source: Wikipedia)

Qibo
Qibo is a quantum programming language that was co-developed by Qilimanjaro. It features an
open-source full-stack API for quantum emulation and quantum hardware control (Figure A.7).
Its aim is to provide quantum middleware with the following characteristics:

 simplicity: agnostic design to quantum hardware platforms;

 flexibility: transparent mechanism to execute code both on classical and quantum hardware;

 community: a common place where find solutions to accelerate quantum development;

 documentation: describe all steps required to support new quantum processors or quantum
emulators;
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 applications: maintain a large ecosystem of quantum applications, quantum solution models
and quantum algorithms.

Figure A.7: Qibo components (source: Qibo)

QMASM
Quantum Macro Assembler (QMASM) is a low-level language specific to D-Wave Systems’
quantum annealers8.

QMASM fills a gap in the software ecosystem of D-Wave System’s quantum annealers by shielding
the programmer from having to know system-specific hardware details while still enabling
programs to be expressed at a fairly low level of abstraction. It is therefore analogous to a
conventional macro assembler and can be used in much the same way: as a target either for
programmers who want a great deal of control over the hardware or for compilers that implement
higher-level languages.

Some relevant QMASM language features are that it:

 allows programs to refer to variables symbolically;

8 This tool used to be called "QASM" but was renamed to avoid confusion with MIT’s QASM, which is used to describe
quantum circuits (a different model of quantum computation from what D-Wave Systems uses), and the IBM Q QASM
language (now OpenQASM) language, which is also used for describing quantum circuits.
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 accepts arbitrary values for the function coefficients and automatically maps those onto what
is accepted by the underlying hardware;

 provides shortcut syntax for biasing two variables to have the same value (or, respectively, the
opposite value);

 supports macros to facilitate code reuse;

 allows sets of macros to appear in a separate file that can be included into a main routine.

Quil
Quil was developed by Rigetti Computing for programming its quantum processors. It is part of
Rigetti’s Forest QSDK. An open-source Python library called PyQuil was introduced to develop Quil
programs with higher level constructs.

Figure A.8: Example Quil source code: teleportation of a qubit (source: Wikipedia)

ZX-calculus
ZX-calculus is a graphical quantum programming language that uses topological composition
rules. It was created by Bob Coecke and Ross Duncan. ZX-calculus visualises the modifications
made to a set of qubits by means of ZX-diagrams (unidirectional multi-graphs).

ZX-calculus is particularly useful for the specification of Measurement-Based Quantum
Computing (MBQC), for developing Quantum Error Correction (QEC) code and for optimisation of
quantum source code by quantum compilers.

PyZX is an open-source Python tool that implements ZX-Calculus principles for the creation,
visualisation and automated rewriting of large-scale quantum circuits.
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Figure A.9: Examples of ZX calculus operations (source: Olivier Ezratty)
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A.2 High-level quantum programming languages

High-level quantum programming languages are either imperative languages (described in A.2.1),
declarative languages (described in A.2.2) or functional languages (described in A.2.3).

A.2.1  Imperative quantum programming languages

IBM Quantum Composer
The IBM Quantum Composer is a GUI that allows users to construct various quantum algorithms
or run other quantum experiments. Users may see the results of their quantum algorithms by
either running it on a real quantum processor or by using a quantum emulator. The IBM Quantum
Composer can also be used in scripting mode, where the user can write programs in the
OpenQASM-language instead.

Figure A10: Example IBM Quantum Composer diagram (source: IBM Q)

The IBM Quantum Composer and the IBM Quantum Lab, which are part of IBM Q’s Qiskit QSDK,
form an online platform allowing public and premium access to cloud-based quantum computing
services provided by IBM Q. This includes access to a set of IBM Q's quantum processors, a set of
tutorials on quantum computation and access to an interactive textbook. There are currently more
than 20 quantum processors on the service, some of which are freely available for the public. This
service can be used to run quantum algorithms and experiments, and explore tutorials and
quantum emulations around what might be possible with quantum computing.
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Ket
Ket Quantum Programming is an open-source platform maintained by Quantuloop, providing
dynamic interaction between classical and quantum data at the programming level for classical-
quantum development.

Figure A.11: Example Ket source code: quantum teleportation (source: Ket)

The Ket Quantum Programming platform consists of three main projects:

1. Ket is an embedded language designed to facilitate quantum programming, leveraging the
familiar syntax and simplicity of Python, letting anyone quickly prototype and test a quantum
application.

2. Libket is the runtime library for the Ket language, but one can use it for quantum acceleration
on embedded systems using C, C++ or Rust.
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3. Ket Bitwise Simulator (KBW) is a noise-free quantum emulator that allows anyone to test
quantum applications on classical computers. KBW features two emulation methods: dense
simulation using quantum state vector-based emulation and sparse emulation based on the
Bitwise representation.

OpenQL
Open Quantum Library (OpenQL, see Figure A.12) is an open-source quantum programming
framework created by TU Delft. It includes a high-level quantum programming language, its
associated quantum compiler and a low-level assembly language, cQASM.

Figure A.12: OpenQL architecture (source: TU Delft)

ProjectQ
ProjectQ is a scripting quantum programming language from ETH Zurich that takes the form of
an open-source Python framework. It includes a compiler that converts quantum code into C++
language for execution in a quantum emulator with a traditional processor. It supports IBM Q's
quantum computers via their OpenQASM language, as well as emulation on a classical computer
via a C++ implementation that supports up to 28 qubits. ProjectQ is compatible with the
OpenFermion initiative.
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Figure A.13: Example Project Q source code: QRNG (source: ProjectQ)

Q#
Q# is a high-level programming language developed by Microsoft for developing quantum
algorithms. It is part of the Quantum Development Kit (QDK) and is designed to be quantum
hardware agnostic, scale to the full range of quantum applications and to optimise execution.

As a programming language, Q# draws familiar elements from Python, C#, and F#, and supports
a basic procedural model for writing programs with loops, if/then statements and common data
types. It introduces new quantum-specific data structures and operations, such as repeat-until-
success and adaptive phase estimation, which allow the integration of quantum and classical
computations. For example, the flow control of the classical component can be based on the
outcome of a quantum measurement.

In Q#, qubits are a resource that are requested from the runtime when needed and returned when
no longer in use. This is similar to the way that classical languages deal with heap memory.

The Q# runtime is responsible for determining a mapping from a qubit variable in a quantum
program to an actual logical or physical qubit that allows the quantum algorithm to execute,
including any qubit state transfer and remapping required during execution. That mapping may
be deferred until after the topology and other details of the target quantum processor are known.

The representation used in Q# has the interesting implication that all of the actual quantum
computing is done by side effect. There is no way to directly interact with the quantum state of
the quantum processor as it has no software representation at all. Instead, operations performed
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on qubit entities have the side effect of modifying its quantum state. Effectively, the quantum
state of the quantum processor is an opaque global variable that is inaccessible, except through
a small set of accessor primitives (and even these accessors have side effects on the quantum
state, and so are really “mutators with results” rather than true accessors).

Figure A.14: Example Q# source code (source: Microsoft)

Q.js
Q.js is an open-source free graphical quantum emulator (a drag-and-drop quantum circuit editor,
written in JavaScript and thus running in a browser. It includes a powerful JavaScript library and
there is nothing to install and nothing to configure.

Figure A.15: Example Q.js source code: Bell state (source: Q.js)
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QCL
Quantum Computation Language (QCL) is one of the first quantum programming languages,
created at the Austrian Institute of Technology in Vienna.

The most important feature of QCL is its support for user-defined operators and functions. The
syntax resembles that of the C programming language and its classical data types are similar to
primitive data types in C. One can combine classical code and quantum code in the same program.

QCL introduces the quantum register (an array of qubits), called qureg, which is considered to be
the foundation quantum data type in QCL.

Similar to modern programming languages, QCL enables one to define new operations that can
manipulate quantum data.

Qiskit
The Qiskit quantum programming language (Figure A.16), which is part of IBM Q’s Qiskit QSDK,
is a high-level scripting library associated with OpenQASM. It can be used with Python, JavaScript
and Swift (a general-purpose language from Apple) and runs on Windows, Linux and MacOS
platforms. It is published in open-source and is also supported by other quantum computers
vendors such as trapped ion qubit-based AQT and IonQ, and cold atom qubit-based ColdQuanta.

Qiskit includes a graphical circuit-drawing function that generates a graphical visualisation of
quantum circuits using the open-source document composition language LaTeX.

Qiskit comes with numerous templates and sample codes to exploit a wide range of known
quantum algorithms.

Figure A.16: Qiskit workflow (source: IBM Q)
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Quantum source code compilation takes place either on IBM Q's classicàl cloud-based HPC
emulator or on an IBM Q quantum computer that is available in the cloud, by means of free access
on 7-qubit and 127-qubit systems or paid access on 27-qubit to 433-qubit systems.

Qunity

Qunity is a quantum programming language created by the universities of Maryland and Chicago
and by AWS. Its goal is to unify quantum and classical programming concepts in a single language.
Its syntax uses familiar programming constructs that can have both quantum and classical effects,
such as summing linear operators, using exception handling syntax with projective measurements
and using aliasing to induce entanglement. It can also automatically construct reversible
subroutines from irreversible quantum algorithms through the uncomputation of “garbage”
outputs. It can for example create full quantum oracle functions for quantum algorithms like
Grover, Deutsch-Jozsa and Simon.

Qunity is still being developed; Qunity source code will be compiled to generate OpenQASM
quantum assembly code.

Figure A.17: Example Qunity source code: QFT (source: University of Maryland)
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Scaffold
Scaffold (Figure A.18) is a C-like language that compiles to OpenQASM quantum assembler code.
It is open source built on top of the LLVM Compiler Infrastructure (a collection of modular and
reusable compiler and toolchain technologies9) to perform optimisations on Scaffold source code
before generating a specified quantum processor instruction set. It is used to program traditional
code which is then automatically transformed into quantum gates via its Classical Code to
Quantum Gates (C2QG) function.

Scaffold was developed at Princeton University and its development was funded by IARPA.

Figure A.18: Structure of a Scaffold program (source: Princeton University)

9 Despite its name, LLVM has little to do with traditional virtual machines. The name "LLVM" is not an acronym; it is just
the name of the project.
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Silq
Silq is a high-level quantum programming language with a strong static type system. It was
developed at ETH Zürich.

Figure A.19: Example Silq source code: Grover’s quantum algorithm (source: ETH Zurich)
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A.2.2  Declarative quantum programming languages

QML

Qt Modeling Language (QML) is a user interface markup language. It is a declarative language for
designing user interface–centric applications. Inline JavaScript code handles imperative aspects.
QML is associated with Qt Quick, the UI creation kit originally developed by Nokia within the Qt
framework10. QML also introduces both classical and quantum control operators.

A QML document describes a hierarchical object tree. QML modules shipped with Qt include
primitive graphical building blocks, modelling components, behavioural components and more
complex controls. These elements can be combined to build components ranging in complexity
from simple buttons and sliders, to complete internet-enabled programs.

QML elements can be augmented by standard JavaScript both inline and via included .js files.
Elements can also be seamlessly integrated and extended by C++ components using the Qt
framework.

Because QML and JavaScript are very similar, almost all code editors supporting JavaScript will
work. QML and JavaScript code can be compiled into native C++ binaries with the Qt Quick
Compiler. Alternatively there is a QML cache file format which stores a compiled version of QML
dynamically for faster start-up the next time it is run.

Figure A.20: Example QML source code (source: Wikipedia)

10 Qt Quick is used for mobile applications where touch input, fluid animations and user experience are crucial.
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A.2.3  Functional quantum programming languages

LIQUi|⟩
Language-Integrated Quantum Operations (LIQUi|⟩) is a quantum emulation extension on the F#
functional programming language. It is currently being developed by the Quantum Architectures
and Computation (QuArC) Group, part of the StationQ efforts at Microsoft Research. LIQUi|⟩ seeks
to allow quantum developers to experiment with quantum algorithm design before physical
quantum computers are available for use.

LIQUi|⟩ can be used to translate a quantum algorithm written in the form of a high-level program
into low-level machine instructions for a quantum processor. The toolkit includes a compiler,
optimisers, translators, various emulators and a host of examples.

LIQUi|⟩ allows the emulation of Hamiltonians, quantum circuits, quantum stabilizer circuits and
quantum noise models, and supports client, service and cloud modes of operation. It allows the
user to express circuits in F#, and supports the extraction of quantum circuit data structures that
can be passed to other components for circuit optimisation, Quantum Error Correction (QEC),
quantum gate replacement, export or rendering. The LIQUi|⟩ software is architected to be fully
modular to permit easy extension as desired.

LIQUi|⟩ includes state-of-the-art circuit emulation of up to 30 qubits, limited only by memory and
computing threads.

QFC and QPL
Quantum Flow Charts (QFC) and Quantum Programming Language (QPL) are two closely related
quantum programming languages defined by Peter Selinger. They differ only in their syntax: QFC
uses a flowchart syntax, whereas QPL uses a textual syntax. Both languages can operate on both
quantum and classical data.

Figure A.21: Example QFC flowchart: probabilistic fair coin toss (source: Peter Selinger)
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QWIRE
QWIRE is a quantum programming language from the University of Pennsylvania. It is a small
quantum circuit language embedded in a classical host language, which provides three core
features:

1. a platform for high level quantum computing, with the expressiveness of embedded
languages like LIQUi∣⟩;

2. a linear type system that guarantees that generated circuits are well-formed and respect the
laws of quantum mechanics;

3. a concrete denotational semantics, specified in terms of density matrices, for proving
properties and equivalences of quantum circuits.

Figure A.22: Example QWIRE source code: quantum teleportation
(source: University of Pennsylvania)
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TWIST
TWIST is a language created at MIT’s CSAIL lab that enforces how qubits are entangled or not,
handles the notion of purity (for a set of qubits not influenced by others) and enables the creation
of safer quantum programs. It introduces µQ, a functional language featuring classical control and
quantum data (in the style of the Quantum Lambda Calculus).

Since it is not a full quantum programming language (it does not provide the means for building
larger quantum circuits), one has first to build the quantum circuit with TWIST, do all the
appropriate analyses, and then build the quantum circuit with a full-blown quantum language in
order to actually be able to emulate it and/or run it on a real quantum processor. While that’s just
a little extra work for small quantum circuits, it quickly becomes a challenge when designing
larger quantum circuits. Also, compared to quantum languages such as OpenQASM, TWIST source
code is noticeably lengthier.

Figure A.23: Example TWIST source code: quantum teleportation (source: Quantum Zeitgeist)
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Appendix B – Overview of quantum emulators

This appendix provides a brief description (in alphabetical order) of a representative selection of
quantum emulators.

Amazon Bracket emulators

Amazon Bracket emulators include the DM-based DM-1, the SV-based SV-1 and the TN-based
TN-1 emulators.

Cirq emulators
Google Quantum AI ‘s Cirq QSDK comes with built-in open-source Python emulators for testing
small quantum circuits. The two main types of emulations that Cirq supports are pure state and
mixed state. The pure state emulations are supported by cirq.Simulator and the mixed state
emulators are supported by cirq.DensityMatrixSimulator.

cuStateVec and cuTensorNet
Nvidia develops and maintains the cuStateVec (quantum state vector-based) and cuTensorNet
(tensor network-based) quantum emulators as part of its cuQuantum QSDK that runs on top of
Nvidia GPGPUs.

FermionIQ

FermionIQ delivers quantum circuit emulators as a SaaS platform to design and test quantum
algorithms at scale.

IQS
Intel Quantum Simulator (IQS), aka qHiPSTER, is an open-source high-performance generic qubit
quantum circuit emulator. It supports up to 42 pure-state qubits in quantum state vector
emulation mode.

Jet
Jet is a cross-platform C++ and Python-based library created by Xanadu for emulating quantum
circuits using tensor network contractions. It has built-in support for concurrent tensor
contractions on CPUs and GPUs. In addition, Jet integrates seamlessly with PennyLane, providing
for quantum optimisation for Quantum Machine Learning (QML) applications.

Lightning
Lightning is a high-performance quantum circuit emulator created by Xanadu, designed to
provide high performance for Quantum Machine Learning (QML) applications. Written in C++ and
accessible via Python, there are two emulators in the Lightning family: lightning.qubit and
lightning.gpu. Lightning ensures quick emulation of large workflows, whether using GPUs locally
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or running on cloud-based supercomputers. In addition, Lightning integrates seamlessly with
PennyLane, providing cutting-edge techniques for optimisation of QML workflows.

Pulser
Pulser is a framework developed by Pasqal for composing, emulating and executing pulse
sequences for neutral-atom qubit-based quantum processors. The pulser_simulation extension
provides tools for classical emulation (using Python QuTiP libraries) to aid in the development and
testing of new pulse sequences.

PyQVM
Rigetti Computing’s Python Quantum Virtual Machine (PyQVM) is a flexible and efficient emulation
library for Quil, which is contained in its Forest QSDK. PyQVM evaluates Quil programs (parsed
and compiled by quilc) on a virtual machine that can model various characteristics of a true
quantum computer (though without needing access to it).

QCE
Quantum Computer Emulator (QCE) is a software tool developed at the University of Groningen
that emulates various types of  quantum circuits. QCE provides an environment to debug and
execute quantum algorithms under realistic experimental conditions. The QCE software consists
of a GUI and the quantum circuit emulator itself.

Qiskit Aer
Qiskit Aer (open-source) from IBM Q supports quantum circuit emulations in state quantum vector
mode, density matrix mode and also in the less common matrix product state mode (adapted to
weakly entangled states) and stabilizer mode (supporting only Clifford group gates).

QLM
Quantum Learning Machine (QLM) is a proprietary, Intel platform-based, extensive quantum
circuit emulation suite developed and maintained by Eviden (formerly Atos11). It has been widely
adopted by quantum developers worldwide.

myQLM is a freely available subset of the full QLM suite. It supports emulation for the three
quantum computing paradigms: quantum simulation, quantum annealing and gate-based
quantum computing.

qsim
Google Quantum AI’s open-source qsim emulator can simulate up to 30 qubits on a laptop and
up to 40 qubits in Google Cloud.

QuEST
The open-source Quantum Exact Simulation Toolkit (QuEST) was developed at the University of

11 Eviden is an Atos Group company that brings together its digital, cloud, big data and security business lines.



Quantum Software Development Tools

Page 49 of 74

Oxford. QuEST is a high performance emulator of quantum circuits, state-vectors and density
matrices. QuEST uses multithreading, GPU acceleration and distribution to run fast on laptops,
desktops and networked supercomputers. It is stand-alone, requires no installation, and is trivial
to compile and get running.

QuIDDPro
QuIDDPro (open-source) was developed at the University of Michigan. It is an easy-to-use
computational interface for generic quantum circuit emulation. It supports quantum state vectors,
density matrices, and related operations using the Quantum Information Decision Diagram
(QuIDD) data structure. QuIDDPro does not always suffer from the exponential blow-up in size of
the matrices required to simulate large quantum circuits. As a result, QuIDDPro is significantly
faster and uses significantly less memory compared to other generic emulation methods for
quantum circuits with (many) more than ten qubits.

Quirk
Quirk (open-source) was developed by Craig Gidney (now at Google). It runs in a browser and
even on a smartphone.

QuTiP
QuTiP is open-source software for emulating the dynamics of open quantum systems. The QuTiP
library depends on the NumPy, Scipy and Cython numerical packages. In addition, graphical
output is provided by Matplotlib. QuTiP aims to provide user-friendly and efficient numerical
emulations of a wide variety of Hamiltonians (including those with arbitrary time-dependence), as
commonly found in a wide range of physics applications such as quantum optics, trapped ions,
superconducting circuits and quantum nanomechanical resonators. QuTiP is freely available for
use and/or modification on Linux, Mac OSX and Windows platforms.

QVM
Google Quantum AI’s open-source Quantum Virtual Machine (QVM) emulates a Sycamore
quantum circuit with high accuracy.

QX Emulator
QX Emulator is an open-source quantum state vector-based quantum circuit emulator developed
at QuTech. It allows quantum algorithm designers to emulate the execution of their quantum
circuits on a quantum computer (up to 34 qubits). The emulator defines a low-level quantum
assembly language named Quantum Code which allows users to describe their quantum circuits
in a simple textual source code file; the source code file is then used as the input of the emulator
which executes its content.

SandBox AQ emulator

The SandBox AQ emulator is a DMRG-based quantum circuit emulator developed together with
Google Quantum AI.
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SimulaQron
SimulaQron (open-source) was developed by QuTech. It runs on their Quantum Inspire QSDK with
two quantum processors using 2 qubits (Spin-2) and 5 qubits (Starmon-5) and on two hardware
emulators supporting 26, 31 and 34 qubits.
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Appendix C – Overview of Quantum Software Development Kits

This appendix provides a brief description (in alphabetical order) of a representative selection of
Quantum Software Development Kits (QSDKs), including those from the quantum computing
vendors of Chapter 3.

Note
The name of a QSDK is sometimes the same as the name of its principal quantum programming language or
the name of the quantum computing service provided by the vendor.

Amazon Braket
The Amazon Braket Python QSDK (Figure C.1) is an open-source library that provides a framework
that can be used to interact with quantum computing hardware devices and quantum circuit
emulators through Amazon Braket. It provides access to multiple different types of quantum
computers.

Figure C.1: Amazon Braket (source: AWS)

There are a couple of different ways to use Amazon Braket:

1. Use a managed notebook instance via the AWS console, which runs a Jupyter notebook hosted
on AWS servers that comes with the Braket SDK and other useful libraries pre-installed.

2. Use a Jupyter notebook or IDE in a local development environment by installing the Braket SDK
and setting up the AWS Command Line Interface (CLI) on a workstation.

Alternatively, it is possible to use one of the Amazon Braket plugins, such as for example
PennyLane or Qiskit plugins, to access Amazon Braket devices.

Cirq
Google Quantum AI’s Cirq QSDK (figure C.2) is an open-source project developed by Google
Quantum AI, which uses the Python programming language to create and manipulate NISQ
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quantum circuits. Programs written in Cirq can be run on many different quantum computers,
including those from AQT, Google Quantum AI, IonQ, Pasqal and Rigetti Computing.

Figure C.2: Cirq QSDK components (source: Quantum Computing Report by GQI)

Google Quantum AI’s FoxTail and Bristlecone quantum computers implement a CZ gate as their
two-qubit unitary (as opposed to a CNOT gate as is common with other quantum computer
architectures).

Cirq also supports Google’s AI Quantum Sycamore quantum computer and provides two built-in
quantum circuit emulators.

Several companies have used Cirq in collaboration with Google for various projects. For example,
QC Ware used Cirq for implementing QAOA quantum algorithms and Cirq integrates with
OpenFermion, an hardware-agnostic library for simulating fermionic systems on quantum
computers.

cuQuantum
Nvidia developed the cuQuantum QSDK running on top of their GPGPUs (Figure C.3) thatt
implements quantum circuit emulation.

Figure C.3: cuQuantum QSDK architecture (source: Nvidia)
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The cuQuantum QSDK contains both a quantum state vector-based emulator (cuStateVec) with
tens of qubits and a less resources-hungry tensor network-based emulator (cuTensorNet) that
supports up to thousands of qubits. Nvidia also integrated cuStateVec into qsim, Google Quantum
AI’s state vector-based simulator that can be used through Cirq, and into IBM Q’s Qiskit Aer.

Nvidia also developed a quantum compiler, nvq++, which targets the Quantum Intermediate
Representation (QIR), a low-level quantum language specification covering hybrid classical
/quantum computing needs. It is supported by the Linux Foundation led QIR Alliance with
contributions from Microsoft, ORNL, Quantum Circuits Inc., Quantinuum and Rigetti Computing.

Forest
Rigetti Computing’s Forest QSDK (Figure C.4) is an open-source hybrid classical/quantum
architecture that is optimised for NISQ quantum computers. It includes the pyQuil quantum
programming language, the Quil compiler (quilc) and the PyQVM quantum circuit emulator.

Quantum programs written in Quil can be executed on any implementation of a Quantum Abstract
Machine (QAM), such as a Rigetti Computing QPU or a Rigetti quantum circuit emulator. The quilc
compiler compiles Quil source code for a given QAM according to its supported instruction set
architecture.

Figure C.4: Forest hybrid classical/quantum architecture (source: Rigetti Computing)

Ocean
D-Wave Systems’ Ocean QSDK (Figure C.5) is an open-source suite of quantum development tools
written mostly in the Python programming language. Ocean enables users to formulate problems
in the Ising and Quadratic Unconstrained Binary Optimization (QUBO) models. Results can be
obtained by submitting a quantum job to an online D-Wave quantum annealer or an hybrid solver
in Leap, D-Wave System's real-time quantum application environment.
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Figure C.5: Ocean quantum software development framework (source: D-Wave Systems)

Orquestra
Orquestra (figure C.6) is Zapata Computing’s hardware-agnostic software development platform
for quantum, quantum-inspired and classical generative model solutions. It is based on Zapata
Computing’s proprietary Generator-Enhanced Optimization (GEO) strategy, which is flexible to
adopt any generative model from quantum to quantum-inspired or classical, such as for example
Generative Adversarial Networks (GANs) or Quantum Circuit Born Machines (QCBMs).

Figure C.6: Orquestra quantum software development platform (source: Zapata AI)
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Orquestra provides various means for composing quantum computing workflows:

 use of built-in capabilities for quantum workflow design, execution and analysis, taking
advantage of open-source algorithms and proprietary Zapata Computing algorithms;

 mix and match modules written with popular quantum libraries and languages including Cirq,
PennyLane, PyQuil and Qiskit, leveraging a library of back-end solutions;

 compare the relative strengths of various back-end systems when applied to particular
problems by benchmarking how quantum workflows perform across them.

From managing complex data records to automated parallelisation via container orchestration,
Orquestra enables iterative, flexible experiments at scale. Users can submit quantum workflows
to the Orquestra Quantum Engine (OQE) servers with command line and orchestrate workflow
tasks across a full range of back-ends (quantum annealers, gate-based quantum processors,
quantum circuit emulators and classical HPC resources). Both intermediate data and final results
can be exported for analysis into either a Jupyter Notebook or a Microsoft Excel spreadsheet, or
on the Tableau Platform.

Users can leverage the OQE servers and run work on either Zapata Computing’s cloud, their public
cloud of choice (AWS Market Place, Google Cloud Market Place, IBM Cloud or Microsoft Azure
Quantum) or on on-premise machines.

PennyLane
PennyLane is an open-source cross-platform Python library developed by Xanadu for
differentiable programming (Box C.1) of quantum computers.

Differentiable programming is a programming paradigm in which a computer program can be
differentiated throughout via automatic differentiation. This allows for gradient-based optimisation
of parameters in the program, often via gradient descent, as well as other learning approaches that
are based on higher order derivative information.

Most differentiable programming frameworks, such as TensorFlow, work by constructing a graph
containing the control flow and data structures in the program.

Box C.1: Differentiable programming

The central object in PennyLane (Figure C.7) is a QNode, which represents a node performing a
quantum computation. Several QNodes may be part of a larger hybrid quantum-classical
computation.

QNodes run quantum circuits on quantum devices, which may be simulators built into PennyLane
or external quantum devices provided by plugins. The power of a QNode lies in the fact that it can
be run in a “forwards” fashion to execute the quantum circuit, or in a “backwards” fashion in which
it provides gradients.
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The quantum circuit is specified by defining a quantum function, which is a Python function that
contains quantum operations and measurements. Internally, the quantum function is used to
construct one or more quantum tapes. A quantum tape is a context manager that records a queue
of instructions required to run a quantum circuit.

PennyLane supports a comprehensive set of features, quantum circuit emulators, QPUs and
community-led resources that enable users of all levels to easily build, optimise and deploy
quantum-classical applications.

PennyLane enables seamless integration with Quantum Machine Learning (QML) tools. It provides
users the ability to create models using NumPy, PyTorch or TensorFlow, and connect them with
quantum computer back-ends available from Alpine Quantum Technologies (AQT), Google
Quantum AI, IBM Q, Quantinuum and Rigetti Computing.

Figure C.7: Pennylane architectural overview (source: PennyLane AI)

ProjectQ
ProjectQ (Figure C.8) is an extensible open-source project developed at the Institute for
Theoretical Physics at ETH Zurich, which uses the Python programming language to create and
manipulate quantum circuits. Results are obtained either using a quantum circuit emulator or by
sending jobs to IBM Q quantum devices.

The ProjectQ compiler is modular and allows new compilers to be built by combining existing and
new components. This design allows to customise intermediate quantum gate sets to improve
optimisation for specific quantum algorithmic primitives. It also allows to adapt the compilation
process to different quantum hardware architectures by replacing some of the compiler engines
(including hardware-specific mappers), which maximises the re-use of individual compiler
components.
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Figure C.8: ProjectQ full-stack software framework (source: ETH Zurich)

Qadence
Pasqal’s Qadence is a user-friendly Python programming package designed to implement
analogue, digital-analogue or digital quantum algorithms, tailored for Quantum Machine Learning
(QML) workloads.

Qadence supports Digital-Analogue Quantum Computing (DAQC), a hybrid approach that aims to
combine the precision of digital quantum computing (aka gate-based quantum computing) with
the continuous control and interactions of analogue quantum computing. Pasqal’s next-
generation neutral-atom qubit-based quantum computers will be capable of natively executing
DAQC algorithms.

Qadence stands out particularly in DAQC QML applications, supporting the  native symbolic
parameters, integration with PyTorch12 automatic differentiation engine and advanced parameter
shift rules for higher-order differentiation on real quantum devices. It provides developers with a
simplified interface to accomplish the following:

 easily construct analogue and digital-analogue quantum algorithms;

 seamlessly transition from simulations to real quantum devices, such as Pasqal’s neutral atom
qubit-based quantum computers;

 easily express complex interaction among qubits and readily incorporate them into efficient
executions on quantum simulation backends;

 translate certain types of analogue or digital-analogue operations into numerically efficient
simulations similar to digital quantum circuits;

 general and higher-order parameter shift rules for efficient differentiation of digital-analogue
quantum programs.

Qadence allows quantum algorithms to be structured in “blocks”. Each block can represent a single
quantum gate or a composition of gates. Large bocks are compositions of smaller blocks that can

12 PyTorch is an open-source machine learning library used for developing and training neural network based deep
learning models.
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also be compounded while creating the quantum circuit (figure C.9). This approach is inspired by
the Yao open-source framework for constructing quantum programs.

Figure C.9: Qadence blocks structure (source: Pasqal)

Pasqal plans to augment the Qadence library by incorporating noise channels, tailored error
mitigation techniques for interacting qubit systems, and additional digital-analogue emulation
modes.

Qiskit
IBM Q’s Qiskit is an open-source QSDK for working with quantum computers at the level of
quantum algorithms, quantum circuits, and qubit control and readout pulses.

Qiskit follows the quantum gate-based (aka quantum circuit-based) model for universal quantum
computation and can in principle be used for any type of gate-based quantum computer (it
currently supports superconducting qubits and trapped ions).

Qiskit provides the ability to develop quantum software both at the machine code level of
OpenQASM and at abstract levels suitable for end-users without extensive quantum computing
expertise.

The Qiskit QSDK contains the following components (Figure C.10):

 High-level applications that target specific domains and plug into the tools used by
experts:

- Qiskit Optimization;

- Qiskit Machine Learning;

- Qiskit Finance;
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- Qiskit Nature.

 Qiskit Aqua: library of cross-platform NISQ quantum algorithms.

 Qiskit Patterns: pre-existing hybrid classical-quantum application templates for execution
on either on-premises HPC infrastructures or on IBM’s Elastic Cloud “quantum serverless”
CPU/GPU/QPU infrastructure.

 Low-level applications:

- Qiskit Metal: framework for engineering and designing superconducting quantum
devices;

- Qiskit Ignis: framework for understanding and mitigating noise in quantum circuits
and devices;

- Qiskit Dynamics: provides access to different numerical methods for solving
differential equations;

- Qiskit Experiments: contains tools with a focus on running experiments, analyses and
calibration of pulse schedules (e.g. for implementing error mitigation techniques).

 Qiskit Terra: provides the core Qiskit QSDK capabilities.

 Qiskit Aer: provides a set of quantum circuit emulators.

 Hardware providers: support for IBM Q quantum computers and other quantum computers
(AQT, IonQ, etc.).

Figure C.10: Qiskit QSDK components (source: qiskit.org)
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Qiskit provides the following execution modes:

 single-job mode;

 iterative mode;

 batch mode, including multi-job workflows;

 session mode, including multiple-session windows.

Note
The IBM Q Qiskit QDSK component landscape is constantly changing and hard to follow.

Quantify
Quantify is a Python-based, high-level data acquisition platform developed by Qblox. It is focused
on providing all the necessary tools for quantum computing experiments. It is built on top of
QCoDeS. The simple software framework enables setting-up typical characterisation experiments
and advanced experimental procedures.

Quantum Development Kit
The Quantum Development Kit (QDK, see Figure C.11) is an open-source set of tools developed
by Microsoft. Quantum programs can be written and run within Visual Studio using the quantum
programming language Q#.

Figure C.11: QDK development environment (source: Microsoft)

Programs developed with the QDK can be run in Microsoft's Azure Quantum on quantum
computers from IonQ, Pasqal, Quantinuum and Rigetti Computing, and also on various quantum
circuit emulators.

QDK consists of the following components:

- Q# programming language and libraries;

- APIs for using Python and .NET languages (C#, F# and VB.NET) with Q#;
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- IQ# kernel for running Q# on Jupyter Notebooks;

- extensions for Visual Studio Code (VSC) and Visual Studio (VS);

- Python packages to submit Cirq, Q# and Qiskit quantum applications to the Azure Quantum
service;

- Azure CLI extension to manage the Azure Quantum service and submit Q# applications.

Quantum Inspire
Quantum Inspire (QI, see Figure C.12) is a quantum computing platform designed and built by
QuTech. The goal of Quantum Inspire is to provide users access to various quantum hardware
technologies to perform quantum computations.

Figure C.12: QI architecture (source: QuTech)

QI provides a variety of ways to program quantum algorithms, execute these algorithms and
examine the results. It includes a graphical interface to program in QASM and to visualise
operations in quantum circuit diagrams.
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QI enables access to two quantum processor back-ends, 2-bit semiconductor electron spin qubit-
based (Spin-2) and 5-qubit transmon qubit-based (Starmon-5), and to three versions of the QX
Emulator back-end (up to 26 qubits on a commodity cloud server, up to 31 qubits on the Cartesius
SURFsara single-node computer and up to 34 qubits on the Lisa SURFsara cluster computer13).

The Quantum Inspire QSDK consists of:

 a Python interface to the QI platform, which makes it possible to programmatically generate
quantum circuits and process the results;

 a sub-package for writing algorithms in the ProjectQ quantum programming language;

 a sub-package for writing algorithms in the Qiskit quantum programming language.

Strawberry Fields
Xanadu’s Strawberry Fields QSDK is an open-source Python library for designing, simulating, and
optimising Continuous Variable (CV) quantum circuits for photonic quantum processors. It is the
library for executing programs on Xanadu's X-Series quantum processors, which are based on
qumodes instead of qubits (Table C.1). In addition, three emulators are provided.

Furthermore, Strawberry Fields  provides built-in quantum application components, i.e. high-level
functionality for solving problems such as graph and network optimisation, ML and chemistry.

Table C.1: Comparison of qumode (CV) and qubit models (source: Xanadu)

13 Resource requirements (predominantly the RAM size) typically grow exponentially with the number of emulated
qubits!
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Superstaq
Infleqtion’s Superstaq QSDK (Figure C.13) is a Python-based open-source quantum software
platform that optimises the execution of quantum programs by cross-layer optimisation and
extreme device physics-aware tailoring. Superstaq plugins are available for the Qiskit and Cirq
SDK’s.

Figure C.13: Superstaq layers (source: infleqtion)

Optimisations are currently available for Inflection’s (Hilbert) cold-atom quantum computer,
AQT’s, IBM’s and Rigetti’s (Aspen M-3) superconducting quantum computers and SNL’s QSCOUT
testbed trapped-ion quantum computer.

TKET
Quantinuum’s TKET (aka t|ket⟩) QSDK (Figure C.14) is an open-source toolkit for the creation and
execution of quantum programs for gate-based quantum computers and quantum circuit
emulators14. Its quantum circuit optimisation routines allow users to extract as much power as
possible from any of today’s NISQ devices.

TKET is accessible through the PyTKET Python package, with extension modules providing
compatibility with several quantum computers, quantum circuit emulators and popular quantum
software libraries.

14 TKET was created by the quantum software company Cambridge Quantum Computing (CQC). In 2021, CQC merged
with the quantum computer manufacturer Honeywell Quantum Solutions (HQS) to form Quantinuum.



Quantum Software Development Tools

Page 64 of 74

Figure C.14: TKET architecture (source: CQC)

PyTKET provides many shortcuts and higher-level components for building quantum circuits,
including custom gate definitions, circuit composition, quantum gates with symbolic parameters
and conditional quantum gates. PyTKET’s flexible interface allows to include circuits defined in a
number of quantum languages, including raw source code languages such as OpenQASM and
Quipper, or embedded Python frameworks such as Google Quantum AI’s Cirq, Microsoft’s Q# and
IBM Q’s Qiskit.

XACC
XACC (Figure C.15) is an open-source framework for hybrid quantum-classical computing
architectures developed at the US DoE’s ORNL Science and Energy laboratory. It provides
extensible language front-end and hardware back-end compilation components glued together
via a polymorphic quantum intermediate representation. XACC supports quantum-classical
programming and enables the execution of quantum kernels on D-Wave Systems QAs, IBM Q,
IonQ and Rigetti Computing QPUs, as well as on a number of quantum circuit emulators.

The XACC programming model follows the traditional co-processor model, akin to Nvidia’s CUDA
platform for GPUs, but takes into account the subtleties and complexities inherent to the interplay
between classical and quantum hardware. XACC provides a high-level API that enables classical
applications to offload work (represented as quantum kernels) to an attached quantum accelerator
in a manner that is independent to the quantum programming language and hardware. This
enables one to write quantum code once, and perform benchmarking, verification and validation,
and performance studies for a set of (virtual) quantum emulators or (physical) quantum
computers.
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Figure C.15: XACC architecture (source: XACC)
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Appendix E - Acronyms and abbreviations

ABNF Augmented Backus-Naur Form

acos arccosinus

ADC Analogue-to-Digital Converter

AI Artificial Intelligence

aka also known as

ans answer

AOD Acousto-Optical Coupler

API Application Programming Interface

app application

AQT Alpine Quantum Technologies

Aqua Algorithms for quantum applications

ASIC Application-Specific Integrated Circuit

AWG Arbitrary Wave Generator

AWS Amazon Web Services

BEC Bose–Einstein Condensate

bit binary digit

BNF Backus-Naur Form

BQM Binary Quadratic Model

BR BRanch

C2QG Classical Code to Quantum Gates

C# C sharp
CA California

cand candidate

CCD Charge-Coupled Device

Circ Circuit

Cirq Cirquit
CLI Command Line Interface

CMP CoMPare

CNOT Controlled NOT gate (aka CX gate)
CPU Central Processing Unit

cQASM common Quantum Assembly language
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CQC Cambridge Quantum Computing

cryostat from cryo meaning cold and stat meaning stable
CSAIL Computer Science and Artificial Intelligence Laboratory

ctrl control

CUDA Compute Unified Device Architecture

curl Client URL
CV Continuous Variable

CX Controlled X gate (aka CNOT gate)
Cython C-extensions for Python

CZ Controlled Z gate

D Deutsch gate

DAC Digital-to-Analogue Converter

DAQC Digital-Analogue Quantum Computing

DARPA Defense Advanced Research Projects Agency

DC Direct Current

def define

DM Density Matrix

DM1 Density Matrix 1

DMRG Density Matrix Renormalization Group

DoE Department of Energy

DSL Domain Specific Language

e.g. exempli gratia

EBNF Extended Backus-Naur Form

EDP Electronic Data Processing

eDSL embedded Domain Specific Language

EQ EQual

eQASM executable Quantum Assembly language

est. estimation

et al. et alia

etc. et cetera

ETH Eidgenössische Technische Hochschule

F# F sharp
FM Feature Map
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FMR Fetch Measurement Result

FPGA Field-Programmable Gate Array

FT Fault-Tolerant

FTQC Fault-Tolerant Quantum Computer

GAN Generative Adversarial Network

GB GigaByte

GEO Generator-Enhanced Optimization

GPGPU General-Purpose Graphics Processing Unit

gphase gate phase

GPU Graphics Processing Unit

GQI Global Quantum Intelligence

groverDiff Grover Diffusion operator

GUI Graphical User Interface

H Hadamard gate

had Hadamard gate

HamEvo Hamiltonian Evolution

HEA Hardware Efficient Ansatz

Honey. Honeywell

HPC High-Performance Computing

HQS Honeywell Quantum Solutions

HW Hardware

i.e. id est

IARPA Intelligence Advanced Research Projects Activity

IBM International Business Machines

id identifier

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

Inc. Incorporated

incl. inclusive

init initialisation

int integer

IQ# Interactive Q#

IQS Intel Quantum Simulator
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IR Intermediate Representation

js JavaScript

JSON JavaScript Object Notation

KBW Ket Bitwise Simulator

lab laboratory

LAN Local Area Network

Libs Libraries

LIQUi|⟩ Language-Integrated Quantum Operations

macOS Mac Operating System

MBQC Measurement-Based Quantum Computing

meas measurement

mgt. management

Mgt Management

MIT Massachusetts Institute of Technology

ML Machine Learning

MPS Matrix Product State

ms millisecond

msmt measurement

MW Microwave

Middleware

NISQ Noisy Intermediate-Scale Quantum

nIterations number of Iterations

NOREA Nederlandse Orde van Register EDP-auditors

NP Nondeterministic-Polynomial

NumPy Numerical Python library

On Prem On Premises

OpenQASM Open Quantum Assembly language

OpenQL Open Quantum Library

Ops Operations

Opt Option
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OQC Oxford Quantum Circuits

OQE Orquestra Quantum Engine

OQIA Origin Quantum Computing Industry Alliance

OriginQ Origin Quantum

ORNL Oak Ridge National Laboratory

OS Operating System

OSX Operating System 10

P Phase gate

PC Personal Computer

Program Counter

pGCL probabilistic Guarded Command Language

PHP PHP: Hypertext Preprocessor

Prog. Program

pyQuil Python Library for Quil

PyQuil Python Library for Quil

PyQVM Python Quantum Virtual Machine

PyTKET Python TKET package

PyZX Python ZX-calculus library

q qubit

Q Quantum

Q2B Quantum-to-Business

Q# Quantum sharp
Q.js Quantum JavaScript

QA Quantum Annealer

QAM Quantum Abstract Machine

QAOA Quantum Approximate Optimization Algorithm

QASM Quantum Assembly language

Qbsolv QUBO solver

QCaaS Quantum Computing-as-a-Servie

QCBM Quantum Circuit Born Machine

QCE Quantum Computer Emulator

QCI Quantum Circuits Inc.

QCL Quantum Computation Language

QCoDeS Quantum Copenhagen Delft Sydney
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QCS Quantum Cloud Services

Quantum Computing Service

QDK Quantum Development Kit

QEC Quantum Error Correction

QEM Quantum Error Mitigation

QFC Quantum Flow Charts

qft Quantum Fourier Transform

QFT Quantum Fourier Transform

qGCL quantum Guarded Command Language

qHiPSTER Quantum High-Performance Software Testing Environment

QI Quantum Inspire

Qibocal Qibo calibration

Qibojit Qibo just-in-time

Qibolab Qibo laboratory

Qibosoq Qibo server on QICK
QICK Quantum Instrumentation Control Kit

QIR Quantum Intermediate Representation

Qiskit Quantum Information Software Kit

QLM Quantum Learning Machine

QMASM Quantum Macro Assembler

QMI Quantum Machine Image

QML Qt Modeling Language

Quantum Machine Learning

QNode Quantum Node

Qop Quantum operator

QPE Quantum Phase Estimator

QPL Quantum Programming Language

QPS Quantum Programming Studio

QPU Quantum Processor Unit

QRAM Quantum Random-Access Memory

QRNG Quantum Random Number Generator

QSDK Quantum Software Development Kit

qsim quantum simulator

Qsim Quantum simulator

QuArC Quantum Architectures and Computation

qubit quantum bit
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QUBO Quadratic Unconstrained Binary Optimization

qudit quantum digit

QuIDD Quantum Information Decision Diagram

QuEST Quantum Exact Simulation Toolkit

Quil Quantum instruction language

quilc Quil compiler

QuRE Quantum Resource Estimator

qureg quantum register

Qureg Quantum register

QuTiP Quantum Toolbox in Python

QVM Quantum Virtual Machine

QWA Quantum World Association

R Rotational gate

R/O Readout

RAM Random-Access Memory

ReCirq Research using Cirq

RFSoC Radio Frequency System-on-Chip

RPC Remote Procedure Call

rpcq RPC for Quantum

RT Real-Time

RX RX gate

RY RY gate

SaaS Software-as-a-Service

SAPI Solver API

SBM Simulated Bifurcation Machine

SciPy Scientific and technical computing Python library

sDA Stepwise Digital-Analogue

SDK Software Development Kit

Sim. Simulator

SLM Spatial Light Modulator

SLOS Strong Linear Optical Simulation

snd send

SURF Samenwerkende Universitaire Rekenfaciliteiten

SURFsara SURF - Stichting Academisch Rekencentrum Amsterdam



Quantum Software Development Tools

Page 74 of 74

SV State Vector

SV1 State Vector 1

t time

T T gate

TF TensorFlow

TFQ TensorFlow Quantum

TN Tensor Network

TN1 Tensor Network 1

TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek

TPU Tensor Processing Unit

TrueQ True Quantum

TU Technische Universiteit

U U gate

UCL University College London

UCSB University of California at Santa Barbara

UI User Interface

URL Uniform Resource Locator

USC University of Southern California

v2.0 Version 2.0

VB Virtual Basic

VQE Variational Quantum Eigensolver

VS Virtual Studio

VSC Virtual Studio Code

WAN Wide Area Network

X Pauli X gate (aka NOT gate)
XACC eXtreme-scale ACCelerator

Y Pauli Y gate

Z Pauli Z gate
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