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1.  Introduction

This article provides an overview of the state-of-the-art in the field of gate-based quantum
computer benchmarking, including a description of some currently available benchmarking
techniques and benchmarks1.

Notes

1. This overview is neither exhaustive nor very detailed in its descriptions of the various techniques and
benchmarks, given its extensive range and the fact that this field is rapidly evolving to keep pace with
ongoing developments in quantum computing hardware and software.

2. It is assumed that the reader has reasonable knowledge of classical computing, some basic knowledge
of Artificial Intelligence (AI) techniques, and also some basic knowledge of quantum computing hardware
and software (as for example included in the articles ‘Quantum Computing Explained’, ‘Quantum
Annealing Explained’ and ‘Quantum Software Development Tools’ published by the NOREA Taskforce
Quantum Computing).

Quantum computer benchmarking is used to evaluate quantum computers for multiple purposes:

 comparing commercially available quantum computers;

 determining suitability for specific problem-solving quantum algorithms;

 comparing quantum computing with classical computing2, e.g. for assessing potential
quantum advantage and for cost-benefit analysis;

 estimating the rate of technological progress over time (e.g. to estimate short/medium term
projections);

 etc.

Note
A distinction can made between a benchmark, i.e. a procedure used to measure (a/the) specific aspect(s) of
a quantum computer (component) and a metric, i.e. a number for a particular characteristic of a quantum
computer (component). Given the probabilistic nature of quantum computing, metrics measurements are

1 One could argue that quantum computer benchmarks should also be applicable to quantum annealers. However, the
range of problems that can be solved with quantum annealers and with gate-based quantum computers differs
significantly and furthermore, the solutions (i.e. quantum algorithms) for solving similar problems are very different.
Therefore, only the speed factor (aka time-to-solution) is deemed useful for the purpose of comparing the
performance of quantum annealers and gate-based quantum computers.

2 It should be noted that both are “moving targets”!
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typically obtained using some sort of benchmarking because direct measurements of the characteristics are
often not feasible. For this reason, the distinction between benchmark and metric is often blurred.

In this article, three different types of quantum computer benchmarking are distinguished:

1. component-level benchmarking aka device benchmarking or subsystem benchmarking
(described in Chapter 2);

Note
Depending on the scope of testing, some of these benchmarks could also be used for system-level
benchmarking.

2. system-level benchmarking aka aggregated benchmarking (described in Chapter 3);

3. application-level benchmarking (described in Chapter 4).

In the context of this article, the goal of quantum computer benchmarking is to somehow measure
the (relative) performance of a given (set of) quantum computer(s). Quantum computer
performance relates to scale, speed and quality.

For system-level and application-level benchmarking, the scale factor determines the maximum
size of problems that can be encoded and solved. The number of qubits determines the amount
of quantum information that can be encoded, which caps the size of solvable problems. Since
fault-tolerant quantum computation requires very large numbers of (stable) qubits, scale is a key
metric for quantum computers.

Notes

1. Scale should not be confused with scalability, which is an important characteristic of quantum computer
technology (not of a quantum computer itself) but is impossible to measure as such (it can only be
determined qualitatively based on the characteristics of this technology and its manufacturing
processes). For most quantum computing platforms, increasing the number of qubits relies heavily on
the available materials and fabrication technologies, but the real challenge is to develop technologies
that make scaling (i.e. increasing the number of qubits) possible while maintaining quantum coherence.

2. Qubits can also be used as a resource to improve speed and quality. For example, extra qubits can be
used in multiprogramming of QPUs to increase their quantum circuit processing capability and auxiliary
qubits can be used to reduce the depth of quantum circuits and increase their fidelity.

The speed factor determines the number of operations that can be executed per unit of time.

The quality factor determines how faithfully these operations are executed.

Most quantum computer benchmarking techniques address the quality factor, only a few of them
address the speed factor.
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Some quantum computer benchmarks provide a single-number score while others provide
multiple scores for a range of performance metrics. Single-number scores are easier to compare
but have at least two important drawbacks: (1) a single number cannot capture every aspect of a
quantum computer’s performance, and (2) not everyone is interested in the same type of
performance information.

An ideal quantum computer benchmark should have the following properties:

 broadly accepted by the quantum computing community3;

 universal, i.e. defined at the logical instead of the physical computational level4;

 platform-independent (aka system-agnostic)5;

 applicable to both (Noisy Intermediate-Scale Quantum (NISQ) and Fault-Tolerant Quantum
Computer (FTQC) systems6;

 representative of the computational power needed to execute problem-solving quantum
algorithms corresponding with real-world applications7;

 simple enough to be understandable and useful for non-experts8;

 efficient and scalable verification of the benchmark results9;

 simple pass/fail determination10;

 well-defined, i.e. specifying a clear set of rules for the benchmarking process11.

3 However, only a few quantum computer benchmarks currently enjoy wide acceptance.

4 This property does of course not apply to physical metrics.

5 For some quantum computer benchmarks, this property coincides with the previous one.

6 However, several mainstream quantum computer benchmarks are limited to NISQ quantum computers.

7 However, several mainstream quantum computer benchmarks are based on random quantum circuits while quantum
circuits corresponding with real-world applications are typically highly structured.

8 This property conflicts with the previous one hence a trade-off is needed. It should also be noted that this property
does not apply to physical metrics that are intended for use by specialists.

9 However, few quantum computer benchmarks are efficiently verifiable because classical verification becomes infeasible
as the number of qubits grows. It turns out that quantum computational power is a double-edged sword: quantum
computers with a large number of qubits offer the possibility of computational speedups but simultaneously pose real
problems for testing and assessing their capability.

10 However, for some mainstream quantum computer benchmarks fail/pass determination is rather complex and also
very resource-hungry.

11 However, for some mainstream quantum computer benchmarks the rules are not clearly defined, e.g. it is sometimes
not explicitly specified whether the benchmark’s quantum circuits are defined at the physical or logical level.
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A quantum computer system typically consists of multiple subsystems: the Quantum Processor
Unit (QPU) subsystem, the qubits control subsystem (based on classical electronics and/or
photonics technology), the classical computer subsystem (for the orchestration of quantum tasks
and optionally for the classical part of an hybrid problem solving algorithm), and the networking
subsystem when Quantum Computing-as-a-Service (QCaaS) access is used). Depending on the
particular benchmarking technique, the performance of one, some or all of these subsystems is
addressed and included in the benchmark results.
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2. Component-level benchmarking

Component-level benchmarking is concerned with metrics related to the performance of quantum
computers at the physical level. These low-level metrics address the various characteristics of a
quantum computer's qubits.

The qubit characteristics that relate to the performance of quantum computers typically include
the following metrics:

 number of qubits;

 qubit fidelity (aka qubit stability) refers to the qubit coherence time12 and the qubit dephasing
time13 (see Figure 2.1).

Figure 2.1: Bit-flip error T1 and phase error T2/T2*

The qubit coherence time T1 refers to the spontaneous transition (aka relaxation) over time
from the |1⟩ state to the |0⟩ state caused by various energy dissipation sources (aka “baths”).

The qubit relaxation time is measured with a simple experiment using an X gate and
measuring the result n times at different t times. T1 corresponds to the time when the
probability of obtaining a |1⟩ reaches 1/e (e = 2.718281828459045…); see Figure 2.2.

12 Also known as longitudinal coherence time, longitudinal relaxation time, amplitude damping time or bit-flip error.

13 Also known a phase coherence time, phase relaxation time, transverse relaxation time, phase damping time or phase-
flip error.
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Figure 2.2: T1 measurement (source: Olivier Ezratty 2023)

Tɸ is the “pure” qubit dephasing time and refers to the loss of phase information over time
in the complex probability amplitudes α and β of the qubit quantum state |Ψ⟩ =α∣0⟩ + β∣1⟩

(destroying the interference between them), when assuming an infinite T1 value.

T2 is the actual qubit dephasing time that refers to the loss of phase information under real
circumstances. In practice, two variants of qubit dephasing time measurement are being used:

1. The average phase relaxation time T2 corresponding with the probability that the qubit’s
state has relaxed to ∣0⟩ is equal to 1/e for a qubit with Dynamical Decoupling (DD), which
consists of applying echo sequences to the qubit to compensate for low frequency
decoherence. T2 (aka T2echo or T2DD) is obtained with a so called Hahn echo experiment
using H and X gates.

Figure 2.3: T2 and T2* measurement (source: Olivier Ezratty 2023)
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2. The elapsed time T2* corresponding with the probability that the qubit’s state has relaxed

to ∣0⟩ is equal to 1/e when the qubit is left to evolve freely. T2* is obtained with a so-
called Ramsey experiment using H gates.

In general T2* ≤ T2 ≤ 2 T1. T1 and T2/ T2* can vary widely between qubit technologies.

The qubit quality factor Q is defined as: Q = ωqT1

(ωq is the qubit resonant frequency14, i.e. the resonant frequency of the qubit drive tone that
changes its quantum state from the ground state ∣0⟩ to the first exited state ∣1⟩ )

The qubit quality factor Q consists of various components:

1/Q = 1/Qi + 1/Qd + 1/Qc +1/Qm

- Qi is the qubit internal quality factor (related to the qubit’s internal loss mechanisms;

- Qd is the driving ports (for qubit control signals) quality factor;

- Qc is the qubit coupling ports (for qubit couplers) quality factor;

- Qm is the qubit measurement ports (for qubit readout) quality factor.

 quantum gate fidelity refers to the error rate that is associated with single-qubit and two-
qubit quantum gate operations; the techniques used for measuring intrinsic noise/error
behaviour of one- and two-qubit quantum gates are commonly known as Quantum
Characterization, Verification, and Validation (QCVV);

 trace distance refers to differences in phase which can be overlooked by the gate fidelity
metric;

 qubit readout fidelity (aka qubit measurement fidelity) refers to the error rate associated with
qubit readout operations;

 quantum gate execution time (aka quantum gate speed) refers to the time needed to perform
quantum gate operations;

 qubit readout execution time (aka qubit readout speed) refers to the time needed to perform
qubit readout operations;

14 The qubit resonant frequency ωq is defined as the energy difference between the |1⟩ and |0⟩ states divided by the

reduced Planck constant ħ (h-bar), which is h/2π (the value of h is 6.62607015×10−34 Js).
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 qubit reset execution time (aka qubit reset speed) refers to the time needed to set the qubit’s
quantum state to its ground state (∣0⟩) or a chosen basis state;

 qubit connectivity refers to the way in which qubits can be linked together;

 qubit entanglement scope refers to entanglement not being limited to immediately
neighbouring qubits.

Note
Individual metrics are sometimes combined to provide an aggregated metric. For example, qubit stability,
quantum gate fidelity and qubit readout fidelity are often combined to denote qubit fidelity. Another example
of a combined metric is State Preparation And Measurement (SPAM) fidelity.

There are many techniques for determining the physical performance characteristics of quantum
computers. Quantum computing vendors use these techniques to calibrate15 and test their
systems and they often publish the performance metrics extracted from the results of these
calibrations.

The performance metrics that providers report to users of their systems typically include one-
and two-qubit gate fidelity, SPAM fidelity and T1 and T2(*) coherence times. For example, Figure
2.4 shows the contents of the text file that the Amazon Braket cloud service presents to users of
the IonQ QPU. Other quantum computing vendors provide similar types of information about their
QPUs.

15 Calibration is a technique to reduce systematic errors in quantum circuits.
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Figure 2.4: Example of published metrics (source: Amazon)

Component-level performance metrics may provide a lot of information about a quantum
computer but they have at least two important limitations:

1. Such metrics are typically not sufficient to accurately predict a quantum computer’s
performance running a quantum algorithm. This is because these metrics cannot capture the
full complexity of errors in quantum computer components (e.g. individual quantum gates
and qubit readouts), and because not all sources of error (e.g. crosstalk) are even apparent
when testing a single component.

2. Component-level metrics are challenging for non-specialists to interpret. It is very difficult
for prospective quantum computer users to extrapolate from component-level metrics to
predict how their quantum application will perform.

2.1. Randomized Benchmarking (RB)

Randomized Benchmarking (RB) is a technique used to determine fidelity metrics. RB is based on
the principle that a subset of quantum circuit “subroutines” is chosen randomly from some large
set. Long periods of these random quantum circuit “subroutines” are then chosen to amplify
certain types of noise, thus allowing for the measurement of the average effect of such noise.

RB estimates the average error rates by implementing long sequences of uniformly randomly
sampled quantum Clifford gate16 operations.

RB scales efficiently, requiring only polynomial classical resources17. It is the industry-standard
technique used by quantum hardware manufacturers such as Google Quantum AI and IBM Q.

2.2. Tomographic benchmarks18

Quantum State Tomography (QST) is the process by which a quantum state or (set of) quantum
process(es) is reconstructed using repeated measurements on an ensemble of identical quantum
states. The source of these states may be any device or system which prepares quantum states,
either consistently into quantum pure states or otherwise into general mixed quantum states. To

16 A Clifford gate is a quantum gate that can be decomposed into quantum gates of the Clifford group. The Clifford
group includes the Pauli gates (X, Y and Z), the H (Hadamard) gate, the CNOT (Controlled NOT) gate, the SWAP gate
and many more. Clifford gates are sometimes called “digital” gates while non-Clifford gates are called “analogue”
gates.

17 According to the Gottesman-Knill theorem quantum circuits using only quantum gates from the Clifford group can
be emulated in polynomial time on classical computers.

18 Tomography is the reconstruction of a comprehensive model (of something) from many partial cross-sections or
slices, each of which provides only a limited view that may be useless by itself.
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be able to uniquely identify the quantum state(s), the measurements must be tomographically
complete, i.e. the measured operators must form an operator basis on the Hilbert space19 of the
system, providing all the information about the quantum state.

In Quantum Process Tomography (QPT) on the other hand, known quantum states are used to
probe a quantum (set of) process(es) to find out how the process(es) can be described. QPT is a
procedure to completely determine the evolution of a quantum system.

QST and QPT become systematically unreliable when the “reference frame” operations on which
they rely (pre-calibrated measurements for QST, pre-calibrated state preparations and
measurements for QPT) are either unknown or misidentified. This limits their practical utility and
makes them unsuitable for rigorous characterisation.

Gate Set Tomography (GST), aka long-sequence Gate Set Tomography, is a technique for detailed
predictive characterisation of quantum gates. GST differs from QST and QPT in two fundamental
ways. Firstly, it is almost entirely calibration-free (“self-calibrating”): when GST reconstructs a
model of a quantum system, it does not depend on a prior description of the measurements used
(as does GST) or the quantum states that can be prepared (as does GPT). Secondly, GST does not
reconstruct or estimate a single logic operation (e.g. state preparation or logic gate), but an entire
set of logic operations – a gate set including one or more state preparations, measurements and
logic gates.

Tomographic benchmarking does not scale well and its use is therefore limited to small
components or subsystems.

2.3. Compressed/adaptive learning-based benchmarks

Rather than performing an exhaustive deterministic set of tests as in tomographic benchmarking,
one can choose a random subset of tests (compressive tomography benchmarking) or an adaptive
subset of tests (learning-based benchmarking).

The efficiency of these methods is much better than the tomographic benchmarking methods and
can therefore be used for testing larger components or subsystems, but the quality and
completeness of the information obtained strongly depends on the quality of the model
assumptions.

2.4. Quantum fidelity estimation/witnessing

19 Hilbert spaces (named after the German mathematician David Hilbert) allow the methods of linear algebra and calculus
to be generalised from finite-dimensional Euclidean vector spaces to spaces that may be infinite-dimensional.
Formally, an Hilbert space is a vector space equipped with an inner product that induces a distance function for which
the space is a complete metric space. A qubit state is a vector in a 2-dimensional Hilbert space.
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Fidelity estimation measures how close a quantum state or process is to the ideal state or process,
rather than performing a full tomographic characterisation.

For certain special types of desired quantum states (certain highly entangled systems in
particular), a much more efficient fidelity witness (entanglement witness20 in particular) can be
used to estimate if the quantum system is close to being in such a state.

Fidelity estimation is more efficient than tomography but typically still scales exponentially.

2.5. Entropic sampling benchmarks

Entropic sampling benchmarking is a type of fidelity estimation which measures the entropy in
the output of a series of randomly applied quantum circuits.

Cross-Entropy Benchmarking (XEB) uses the properties of random quantum circuits to determine
the fidelity of a wide variety of quantum circuits. When applied to deep two-qubit quantum
circuits, it can be used to accurately characterise a two-qubit interaction potentially leading to
better calibration. When applied to quantum circuits with many qubits, XEB can potentially
characterise the performance of a large device.

Entropic sampling benchmarking is easy to test but exponentially hard to verify21.

20 An entanglement witness is an Hermitian operator which helps to decide whether a quantum state is entangled or
not. The basic idea is that the expectation value of the witness will be different for separable and entangled quantum
states (an Hermitian operator has only real eigenvalues).

21 This technique was used by Google in 2019 to claim quantum supremacy, even though the measured circuits
responsible for these claims showed very low fidelity.
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3. System-level benchmarking

Most system-level benchmarks are based on determining the performance metrics of a quantum
computer by measuring its behaviour while executing a set of carefully selected quantum circuits,
which is believed to be representative for the load that quantum computers will be subjected to
in practice.

Many problem-solving quantum algorithms for NISQ quantum computers, for example Variational
Quantum Algorithms (VQAs), translate into quantum circuits whose outlines are known but whose
parameters are runtime-dependent. Therefore, the compilation of quantum circuits that arise
from them is a key part of executing quantum programs and should be taken into account by the
benchmarking technique and when comparing benchmark outcomes. For example, quantum
circuits can be compiled and optimised to a great degree offline (Figure 3.1 shows an example of
compilation phases and how they interact with the runtime system).

Furthermore, variational quantum algorithms require repeated interactions between quantum and
classical subsystems and therefore, their speed is considered critical and should also be taken
into account by the benchmarking technique.

Figure 3.1: Runtime architecture and phases of compilation (source: IBM Q)

The quantum circuit width is the number of qubits; some relevant quantum circuits used in real-
world applications are either narrow or wide. The quantum circuit depth is the number of quantum
gates; some relevant quantum circuits used in real-world applications are either shallow or deep22.

22 This is a bit confusing because in most graphical representations of quantum circuits, the qubits are shown from top
to bottom and the quantum gates are shown from left to right.



Quantum Computer Benchmarking

Page 16 of 55

Furthermore, some relevant quantum circuits used in real-world applications are wide shallow
circuits or narrow deep circuits. Many benchmarks do not include these “special” kinds of quantum
circuits and their results are therefore not valid for the corresponding problem-solving quantum
algorithms. For example, the Quantum Volume (QV) benchmark (see § 3.1) only comprises square
quantum circuits (where the width is equal to the depth).

The following quantum circuit types are distinguished for the sake of benchmarking:

 random circuits: these are randomly selected small quantum circuits that build up larger
quantum circuits23;

 periodic circuits (aka cyclic circuits or repetitive circuits): these quantum circuits are structured
periodic rather than random;

 structured circuits (aka application circuits): not clearly defined; this applies to a whole range
of quantum circuits used in real-world applications (i.e. specific problem-solving quantum
algorithms).

The quantum circuits specified in quantum computer benchmarks can be specified at various
levels of abstraction:

 pseudocode circuits

Quantum circuits can be specified at a very high level in terms of a set of layers that are
actually quantum circuit subroutines. Example subroutines include Clifford gates,
Controlled-U gates, n-qubit Toffoli gates, Grover iterations, QFTs, and adders. This kind of
representation is roughly analogous to classical pseudocode: it is relatively human-readable,
and generally requires each layer to be extensively and creatively compiled to run on a
quantum computer.

 canonical-gate circuits

Quantum circuits can be specified in terms of layers formed by parallel combinations of
“canonical” one- and two-qubit gates. A typical example are arbitrary SU(2)24 rotations on

23 The Quantum Performance Laboratory of Sandia National Laboratories (SNL) has determined that some quantum
computers show massive variance in the performance of random circuits of the same depth and width (caused by the
occurrence of structured errors that are catastrophically amplified by quantum circuits that have the “correct”
structure), while other quantum computers don’t. SNL’s finding has a significant impact on the accuracy of the results
of quantum computer benchmarks that are based on the use of random circuits.

24 The Special Unitary group SU (2n) is the space of unitary transformations applicable on n qubits. It covers all the
unitary transformations that can be performed on n qubits (quantum gates are unitary, because they are implemented
via the action of a Hamiltonian for a specific time, which gives a unitary time evolution according to the Schrödinger
equation). Hence SU(2) denotes the unitary transformations applicable to a single qubit, SU(4) denotes the unitary
transformations applicable to 2 qubits, and so on.
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each qubit and CNOTs between each pair of qubits. Most quantum computers do not
implement all these gates natively. Canonical-gate circuits therefore require compilation to
run on a quantum computer.

Each canonical gate can typically be compiled individually via a standardised technique or a
lookup table. Compiling a single canonical gate may produce a fairly complicated quantum
subcircuit (e.g. CNOT gates between widely separated qubits in a local architecture or arbitrary
rotations in an architecture with only discrete gates), but this complexity is usually controllable
and predictable.

 native-gate circuits

Quantum circuits can be specified using layers formed by parallel combination of actual native
gates available on a specific quantum computer, e.g. specific one-qubit gates and entangling
gates between physically adjacent qubits.

Compilation at this level is generally unnecessary, though there may still be some freedom to
schedule those gates in time by inserting idle operations as desired and by “sliding” gates
forward and backward in time without exchanging the order of any non-idle gates.

3.1. Volumetric Benchmarks (VBs)

The Quantum Volume (QV) benchmark (introduced by IBM Q) aims to indicate the maximum size
of square quantum circuits that can be faithfully executed on a particular quantum computer.

QV works as follows. A QV layer is defined as one layer of permutation among qubits and one
layer of pairwise random SU(4) 2-qubit unitary gates (Figure 3.2). The QV is defined by the width
or number of QV layers of the largest random square circuit (with width equal to the number of
layers) that a quantum processor can successfully run.

Figure 3.2: Quantum Volume (QV) determination (source: IBM Q)
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Note
When a QV circuit is compiled to the native gate set of a particular QPU, the circuit depth of the compiled
circuit will typically be much larger than the number of QV layers as the abstract permutations and SU(4)
unitaries may be each decomposed into multiple native gates.

QV measurement executes a series of square circuits multiple times and then compares the
measurement results from the “heavy output” states (i.e. the states with probabilities higher than
the median probabilities of all output states) with the ideal results obtained by emulation. The
largest n-qubit square circuit that can run successfully to produce more than 2/3 of heavy outputs

determines the QV, which is given by 2n.

QV is sensitive to coherence, gate fidelity and measurement fidelity and is also influenced by qubit
connectivity and by quantum compilers which can make quantum circuits more efficient to
minimise the effect of decoherence, i.e. Quantum Error Mitigation (QEM)25. QV is a holistic metric
because it cannot be improved by just improving one aspect of the system, but rather requires all
parts of the system to be improved in a synergistic manner.

QV has been adopted by research and industry and is routinely reported for quantum computers
manufactured by IBM, IonQ and Quantinuum. QV is capable of providing a reasonable basis for
the comparison of gate-based quantum computers but there are nevertheless some issues with
this benchmarking technique, including:

 The QV benchmark does not specify how Quantum Error Correction (QEC) should be handled,
i.e. whether a QV test circuit is defined at the physical or logical level. Therefore, QV is only
applicable to NISQ quantum computers as they do not implement QEC.

 The quantum circuits for problem-solving quantum algorithms corresponding with real-world
applications are not random but rather highly and nontrivially structured. On NISQ quantum
computers, structured errors affect structured circuits very differently than they affect random
circuits. It is known that performance is typically much worse for structured circuits than for
random circuits. Consequently, there is no reason to assume that random circuits will be a
reliable proxy for the vast majority of quantum algorithms running on NISQ quantum
computers (random circuits only contain structure by chance).

 The quantum circuits for many problem-solving quantum algorithms corresponding with
real-world applications are not square. For example, many relevant quantum algorithms
translate to quantum circuits with significantly greater depth than width.

 Not all qubits and qubit connections in NISQ quantum computers are of the same quality and
therefore, even if a QV test is successfully passed, such success may rely on selecting a good
qubit subset, which is not trivial to identify for quantum circuit developers. This is one of the

25 Quantum Error Mitigation (QEM) relates to NISQ quantum computers and should not be confused with Quantum Error
Correction (QEC) which only applies to FTQC quantum computers.
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reasons why the result of QV benchmarks performed by customers and independent parties
lag the QV benchmark results reported by quantum computer vendors.

 The preparation of QV circuits is very time intensive and not well standardised for different
types of quantum computing systems.

 Vendors typically make extensive use of the quantum compiler’s optimisation capabilities
when performing QV benchmarks in order to obtain the best possible results. However, most
quantum circuit developers will use the standard compiler methods of the vendor’s Quantum
Software Development Kit (QSDK). This is another reason why it will be difficult for them to
achieve the performance corresponding with QV benchmark results reported by vendors.

 A quantum computer’s noise profile is not constant over time and therefore, obtained QV
results may no longer be accurate.

 The probability outputs needed for the “heavy output” states (to determine pass/failure of
individual QV quantum circuit tests) must be precomputed, which is computational hard
classicly.

 Relatively small improvements can lead to drastically larger QV numbers due to the
exponentiation in the QV definition, thereby overemphasising differences in capability.

Generalised volumetric benchmarks have been proposed that are a generalisation of the standard
QV benchmark to a more general framework, in terms of both width and depth of the quantum
circuits that a quantum computer can faithfully execute. At the same time, these proposals also
address some of the shortcomings of the standard QV benchmark that are listed above.

Note
The QED-C benchmark (see § 4.1) defines volumetric benchmarking as follows: “Volumetric benchmarking
is a framework for constructing and visualising the results of large, flexible families of benchmarks”. The
QED-C benchmark is however an application-level benchmark based on a suite of quantum algorithms
selected from different application domains. It should therefore not be confused with the system-level
volumetric benchmarks described here.

A major problem is that generalised volumetric benchmarks entail much greater complexity as
the quantum computer performance is no longer represented by a single quantitative value but
rather a set of values for families of successfully tested quantum circuit shapes. To address this
issue, MITRE made a proposal for a volumetric benchmark with a restricted subset of 5 quantum
circuit shapes, named Quantum Volumetric (QV) classes (Table 3.1).

The counts in this table are based on a survey of NISQ and FTQC quantum algorithms with known
resource estimates, which makes it possible to approximate the scaling of quantum circuit depth
in relation to the quantum circuit width (n qubits). MITRE identified 58 of such quantum algorithms
from the following application areas: Quantum Machine Learning (QML), many-body physics and
chemistry, numerical solvers, optimisation, quantum data hiding and other.



Quantum Computer Benchmarking

Page 20 of 55

Table 3.1: QV classes - quantum circuit depths and quantum algorithm counts (source: MITRE)

3.2. Mirroring benchmarks

In mirroring benchmarks the quantum circuits are concatenated with their mirror copy. Optionally,
quantum gate layers can be inserted at the start, at the end and between the two halves of the
mirrored quantum circuit to adjust its sensitivity to certain types of errors.

The advantages of mirroring benchmarking are its efficient classical compilation, simple to
quantify outcome, use of quantum gates that respect a QPU’s qubit connectivity and applicability
to quantum circuits of different structure (random circuits, periodic circuits and structured circuits)
and shape (with respect to depth and width). See Figure 3.3 for an example of a periodic mirror
quantum circuit.

Figure 3.3: Example periodic mirror quantum circuit (source: Sandia National Laboratories)

In Mirror QV, half of the standard Quantum Volume (QV) circuit is replaced with the inverse of the
other half. Instead of using the “heavy output” criterion for determining a successful execution of
the quantum circuit, mirror QV calculates the success probability of the output bitstring being the
same as the ideal bitstring.
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Mirror QV is significantly faster than standard QV because there is no need to classically emulate
the quantum circuits, but the potential downside is that due to its symmetric nature and simple
output, mirror QV may be insensitive to errors that do not impact the all-zero output state and
systematic errors that would cancel out between the first and inverse halves of the quantum circuit
(which are all errors that standard QV might be able to catch).

In November 2023, IBM introduced a new benchmark named Layer Fidelity (LF) that “provides a
more granular understanding of quantum systems while accurately capturing the system’s ability
to run the kinds of circuits that users are running today”. The LF benchmark encapsulates the
entire quantum device’s ability to run quantum circuits, while also revealing information about
individual qubits, quantum gates and crosstalk.

LF expands on Randomized Benchmarking (RB, see § 2.1). With RB, a set of randomised Clifford
quantum gates (X, Y, Z, H, SX, CNOT, etc.) is added to the quantum circuit, then operations are
performed that represent the inverse of the sequence of operations that precede it. If any of the
qubits do not return to their original state by the inverse operations upon measurement, an error
must have occurred. A number is extracted by running this test multiple times while adding more
and more random quantum gates, plotting on a graph how the errors increase with more quantum
gates, fitting an exponential decay to the plot, and using that line to calculate a number between
0 and 1, which is called the fidelity.

In order to extract the LF, the benchmarking test is started with a connected set of qubits, like a
chain of qubits where each one is entangled to their neighbour. Then this connected set of qubits
is split up into multiple layers so that each qubit only has at most one two-qubit quantum gate
acting on it: if a quantum gate is needed to entangle qubit one and qubit two, and another
quantum gate is needed to entangle qubit two and qubit three, then these are split out into two
“disjoint layers”. RB benchmarking tests are then performed on each of these disjoint layers to
calculate the fidelity of each one of them. Finally, the fidelity of all layers is multiplied together
into a final number, the LF.

IBM’s LF benchmark qualifies the whole quantum device, while also providing quantum gate-level
information, such as the average error for each quantum gate in the layered circuits, the Error-
Per-Layered Gate (EPLG) is calculated as

EPLG=1-LF1/n
2Q

where n2Q is the number of two-qubit gates. For a linear chain of N entangled qubits, n2Q is
typically equal to N-1 hence

EPLG=1-LF1/N-1 .
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3.3. Circuit Layer Operations Per Second (CLOPS)

The Circuit Layer Operations Per Second (CLOPS) benchmark (introduced by IBM Q) is used to
determine how many Quantum Volume (QV) quantum circuits a QPU can execute per unit of time.

In order to faithfully model real-world use, it is essential to capture interaction time with the run-
time environment that invokes the quantum circuits. This avoids the pitfall seen in some synthetic
benchmarks that characterise classical systems by their instruction clock rate without considering
the effects of data transfers between CPU, cache and main memory. It is not possible to persist
quantum data across multiple invocations, so data transfer plays an even more prominent role for
quantum computers.

To capture the interaction with the runtime environment, multiple executions of parameterised
quantum circuits are measured, where the choice of parameters is deferred until run time. This
mimics the scenario found in variational quantum algorithms such as the Variational Quantum
Eigensolver (VQE), where the ability of a quantum system to efficiently handle parameterised
circuits is key to the performance of the quantum algorithm.

Measuring execution speed of typical applications requires either a corpus of representative
quantum circuits or a choice of a quantum circuit family that somehow captures an “average”
practically useful quantum circuit. While the difficulty of the latter is recognised, QV quantum
circuits are at least representative of random quantum circuits while simultaneously allowing for
a rigorous notion of quality. This ensures that the benchmarked quantum circuits operate in a
regime where the QPU is producing meaningful results.

CLOPS is formally defined as the number QV layers executed per second using a set of
parameterised QV quantum circuits, where each of the QV circuits has D = log2 QV  layers.

The CLOPS benchmark (Figure 3.4) consists of 100 parameterised template circuits of the same
type as the model circuits used when measuring the QV of the system (see § 3.1), except that the
CLOPS SU(4) random unitaries are parameterised.

Figure 3.4: Matrix of quantum circuits used for CLOPS benchmark (source IBM Q)
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Each quantum circuit template is executed 10 times with 10 choices of random parameters. These
parameters are applied to the quantum circuit template to generate the final quantum circuit that
is then run on the system without any further parameter updates.

Each of these quantum circuits is executed with 100 shots, which is an attempt to balance the
benchmark between just measuring setup time for execution against the number of shots typically
required to estimate an observable with reasonable variance from the output.

CLOPS is calculated as the total number of QV layers executed:

M x K x S x D

where

M is the number of quantum circuit templates (100);

K is the number of parameter updates (10);

S is the number of shots (100);

D is the number of QV layers (log2 QV).

This value is then divided by the total execution time to calculate the CLOPS value.

The CLOPS benchmark is designed to allow the system to leverage all of the quantum resources
and optimisation features on a quantum computing system to run a collection of quantum circuits
as fast as possible, as well as stress all parts of the execution pipeline. This includes data transfer
of quantum circuits and execution results, runtime compilation (lowering basis-quantum gate
level quantum circuits to qubit control subsystem instructions), latencies in loading qubit control
electronics, initialisation of qubit control subsystem, quantum gate times, qubit measurement
(aka qubit readout) times, qubit reset times, delays between quantum circuits, processing of
results and parameter updates. Including all of these parameters in the CLOPS benchmark ensures
that all aspects of the quantum computing system are included to allow for a meaningful
comparison between systems.

In November 2023, IBM updated CLOPS (which was renamed CLOPSv) to CLOPSh to better reflect

how quantum computer hardware executes quantum circuits. CLOPSh recognises that the QV layer

concept, on which CLOPSv is based, is a bit idealised: after compilation, quantum gate operations
such as single-qubit rotations and random two-qubit gates typically require more physical
quantum gates to run on a quantum processor. In particular, qubit connectivity implies that what
is considered a “layer” in QV may in fact require implementing multiple layers on the quantum
computer.
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CLOPSh therefore defines a “layer” differently (Figure 3.5). In CLOPSh, rather than representing a

set of two-qubit gates acting across all random pairs of qubits at once, a CLOPSh layer only
includes the two-qubit gates that can be run in parallel on the quantum processor; if a QV layer
has two quantum gates that cannot be run in parallel, it is split into two or more layers.

Figure 3.5: Layer splitting in CLOPSh benchmark (source IBM Q)

3.4. Generative modelling benchmarks

The qBAS score is a metric designed for benchmarking hybrid quantum-classical systems. It was
developed to enable comparison of the performance of shallow circuits for different quantum
computers.

The qBAS score is based on the generative modelling performance on a canonical synthetic data
set which is easy to generate, validate and visualise for sizes up to hundreds of qubits. Yet,
implementing a shallow circuit that can uniformly sample such data is difficult and some candidate
solutions require large amounts of entanglement. Hence, miscalibration or environmental noise
will affect its performance.
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Data-Driven Quantum Circuit Learning (DDQCL, see Figure 3.6) is used to learn a quantum circuit
that encodes all the BAS patterns26 in the wave function of the quantum state of an ensemble of
n qubits. The 2n amplitudes of this wave function are used to capture the correlations observed
in the data.

Figure 3.6: General framework for DDQCL (source: npj Quantum Information)

Training of the quantum circuit is achieved by successive updates of the parameters θ,
corresponding to specifications of single qubit operations and entangling quantum gates. At each
iteration, measurements from the quantum circuit are collected and contrasted with the data
through evaluation of a cost function which tracks the learning progress.

This allows determination of the qBAS score, which is a figure of merit to assess the performance
of shallow quantum circuits. In a single number, it captures the model capacity of the quantum
circuit layout and intrinsic quantum computer hardware strengths and limitations in solving a
complex sampling task that requires a fair amount of entanglement. It takes into account the
model quantum circuit depth, quantum gate fidelities and architectural design aspects (such as
the quantum computer’s qubit-to-qubit connectivity and native set of single- and two-qubit
gates). It also takes classical resources such as the choice of cost function, optimiser and

26 BAS (Bars and Stripes) is a synthetic data set of images that is widely used to study generative models for unsupervised
machine learning.
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hyperparameters into account. Therefore, it can be used to benchmark the performance of the
whole hybrid quantum-classical system.

3.5. Other system-level benchmarks

Various other system-level benchmarks have been developed, including:

 Cycle benchmarking which assesses the low-level quality of qubit entanglement (developed
by an international team from Canada, Denmark and Austria).

 DARPA launched an RFP for the creation of application-specific hardware-agnostic
benchmarks for quantum computing. The project was awarded to Raytheon BBN and USC.
Their benchmark targets all sorts of quantum technologies, both computing and sensing, and
is named Size, Weight, Application and Power (SWAP). DARPA also awarded a contract to
Rigetti, the University of Technology Sydney, Aalto University and USC to create benchmarks
for large-scale quantum computers.

 A similar approach was proposed by researchers from Brookhaven and the DoE Pacific
Northwest National Laboratory (PNNL).

 Another DoE lab, Sandia National Laboratories (SNL), proposed a variation of Randomized
Benchmarking (RB) that works in the quantum advantage regime.

 Still another DoE lab, Oak Ridge National Laboratory (ORNL), together with several US
universities proposed a Volumetric Benchmark (VB) qualifying the quality of qubit
entanglement.

 A proposal to measure the performance of FTQC quantum computers in an hardware-agnostic
way with six structured circuits tests (Bell test, Schrödinger’s microscope, Mandelbrot, line
drawing, matrix inversion and platonic fractals27), was made by a team from QuSoft (the
Netherlands), the University of Cambridge (UK) and Caltech (USA).

 A team from Berkeley, HRL Labs and the University of Chicago (all USA) devised a randomised
benchmark measuring noise in non-Clifford quantum gates.

 Alibaba USA developed the Universal Randomized Benchmarking (URB) benchmark. It scales
better than Google Quantum AI’s cross-entropy benchmark and it also supports a universal
quantum gate set.

27 Platonic solids, named after the Greek philosopher Plato, are symmetrical geometric structures bounded by regular
polygons all of the same size and shape. Moreover, all edges of each polygon are the same length and all angles are
equal and he same number of faces meets at every vertex (corner or point). Each Platonic solid has its own fractal
structure, the same repetitive patterns that fit within each other.
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 PyQBench is a NISQ benchmarking tool proposed by the Institute of Theoretical and Applied
Informatics from the Polish Academy of Sciences.

 V-score is a benchmark for many-body problem simulation which was proposed by a broad
international research team.
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4. Application-level benchmarking

Due to the complexity of errors in quantum hardware, neither a quantum computer’s Quantum
Volume (QV) nor any other single metric is likely to accurately predict its performance for all
problem-solving quantum algorithms corresponding with real-world applications. There is thus
a need for application-centric metrics and benchmarks that test the performance of quantum
computers on practically relevant tasks. Application-level benchmark suites fulfil this need.

To be useful, application-level benchmark suites should comply with the following guiding
principles:

 scalable

The applications included in a benchmark suite should be scalable from just a few qubits to
hundreds, thousands and beyond. It is also important that the performance metrics scale
efficiently. Resources needed for classical emulation of quantum circuits scale exponentially
with the number of qubits, so simply emulating the benchmarks and comparing with the
experimental results is not a scalable solution. Therefore, a scalable suite must be composed
of applications whose size is parameterisable and the performance of which is efficiently
verifiable.

 meaningful and diverse

Benchmark applications should reflect different use cases that are relevant in real-world
environments. Quantum algorithms pulled from these different use cases present wildly
varying structures and require vastly different amounts of resources from the quantum
computer. A benchmark suite should provide good coverage over these potential use cases to
better understand system performance under a variety of circumstances.

 full system evaluation

The overall performance of a quantum computer relies on the proper functioning and interplay
between the hardware and software stacks. For the NISQ era, the role played by the compiler
(i.e. effectively cancelling gates, mapping between standard and native quantum gates, etc.)
can make or break the execution of a quantum program. In addition, many of the unique
properties offered by different quantum computer implementations (e.g. native multi-qubit
or parametersable gates) are exploited at the compiler level when the quantum program is
transpiled to a hardware supported (aka native) quantum gate set.

Mandating a single compilation tool flow is ineffective because certain capabilities available
only to a particular quantum hardware platform may be overlooked. A benchmark suite should
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therefore specify benchmarks at a shared level of abstraction, such as for example defined by
OpenQASM28, and allow the compiler to play a role in overall system performance.

 adaptable

Quantum computing as a whole, encompassing both hardware and software, is undergoing a
period of rapid advancement. This poses a challenge for benchmarking since benchmark
suites must keep pace with the development of quantum algorithms, compilation
optimisations and quantum hardware advances. The applications included in the benchmark
suite should reflect this by adapting to the current state-of-the-art.

Quantum computer benchmark suites that comply with these principles enable quantum
computer manufacturers to quantify their progress in commercially relevant ways and make it
possible for customers to more accurately predict how a particular quantum computer will
perform on their applications.

4.1. QED-C benchmark

The Quantum Economic Development Consortium (QED-C) developed a suite of quantum
computer benchmarks designed to measure the effectiveness of quantum computers at executing
quantum applications. The QED-C benchmark suite is available as an open-source repository with
extensive documentation.

The QED-C benchmarks probe a quantum computer’s performance on various algorithms and
small applications as the problem size is varied, by mapping out the fidelity of the results as a
function of quantum circuit width and depth. Each benchmark in the suite is derived from an
algorithm or application and specifies a scalable family of quantum circuits. In addition to square
circuits like those tested in the Quantum Volume (QV) benchmark (see § 3.1), QED-C
benchmarking can be used to estimate and report the performance of other quantum circuit
shapes (including wide shallow quantum circuits and narrow deep quantum circuits).

In addition to estimating the fidelity of results generated by quantum circuit execution, the QED-C
benchmark suite is designed to include certain aspects of the execution pipeline in order to
provide customers with a practical measure of both the quality of and the time-to-solution.

Each individual benchmark in the QED-C suite has three important adjustable parameters:

1. the values of n for which performance is tested (corresponding to the input problem size,
which often also corresponds to the number of qubits in the quantum circuits);

28 OpenQASM is a low-level Intermediate Representation (IR) of quantum instructions. It stands at the conjunction
between hardware platform-agnostic quantum software and platform-specific quantum hardware.
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2. the number of quantum circuits that are selected from the benchmarking circuit set;

3. the number of times each quantum circuit is run.

Users can choose the values of n to test, but if two or more quantum computers are to be tested
and the results compared, either the same values of n should be used for all of them, or a
principled methodology should be chosen for selecting the values of n to use (and this
methodology should be stated). For example, one reasonable strategy would be to increase n until
either the result fidelity drops below a threshold value or until the maximum number of qubits
available is reached.

QED-C determines the success of a quantum application by comparing the normalised fidelity of
the output distribution Poutput of a quantum computer with the output distribution Pideal of an
ideal quantum computer, as defined by:

where Puni is the uniform distribution and

where x is the bitstring that encodes the state.

An application is then considered successful if the value of F  exceeds 0.5.

In addition to this primary metric, the benchmark also provides insight into runtime and the ratio
between the programmed and transpiled circuit depth. However, QED-C makes the remark that
runtime metrics are currently rudimentary, as quantum computing providers can have different
definitions of quantum execution time.

QED-C benchmarking permits broad implementation freedom. One particularly important degree
of freedom is that the benchmarked quantum circuits can be compiled into other quantum circuits
that are logically equivalent (i.e. implement the same unitary evolution). This is necessary if a
benchmark’s results are to reflect the performance one can expect to achieve using a quantum
computing provider’s end-to-end stack. However, for benchmarks whose quantum circuits can
be efficiently classically emulated, arbitrary compilations cannot be permitted because all
processing could be offloaded to a classical co-processor. The current QED-C benchmark does
not address this challenge because solving it without forbidding all compilation is rather difficult.
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The QED-C benchmark suite in the current QED-C repository comprises the following set of
quantum algorithms:

 shallow oracle-based algorithms: Deutsch Josza, Bernstein-Vazirani and Hidden Shift
Problem;

 Quantum Fourier Transform (QFT);

 Grover’s search algorithm;

 Quantum Phase Estimation (QPE) and Quantum Amplitude Estimation (QAE);

 Hamiltonian simulation;

 Monte Carlo sampling;

 Variational Quantum Eigensolver (VQE);

 Shor’s order finding algorithm.

QED-C benchmarking allows the users to choose which of these quantum algorithms to
benchmark. This is important because benchmarks for different quantum algorithms test
performance on different tasks, and a user might not consider all the tasks to be relevant. Note
however, that when the aim is to compare multiple quantum computers, the same set of quantum
algorithms should be used for benchmarking all quantum computers whenever feasible.

Execution of the entire suite of benchmark programs results in a data file that stores all of the
metrics collected for the tested quantum computer. Plotting all of the accumulated average result
fidelity data produces charts like the ones shown in Figure 4.1.

Figure 4.1: Examples of accumulated average result fidelity (source: QED-C)

Results for quantum circuits of the same width and depth are averaged together and shown as
coloured squares (where the colours indicate the average result fidelity) on top of a “volumetric
background” (the grey and white squares).
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The volumetric background is a heuristic extrapolation of the quantum computer’s Quantum
Volume (QV), to predict the region in which a quantum circuits fidelity will be above 50% (grey
squares) or below 50% (white squares). The heuristic extrapolation works as follows: a quantum
circuit of width w and depth d is predicted to have a result fidelity above 50% if w x d < log2 (QV)2.

No volumetric background is likely to accurately predict the performance of all quantum circuits,
including those corresponding with the quantum algorithms included in the QED-C benchmark
suite. This is because a quantum circuit’s performance is not only a function of its shape (i.e. its
volumetric position), as it also depends on the type of errors present and whether those errors
change with time or with number of qubits, and also depends on other characteristics (e.g. qubit
connectivity). A volumetric background inferred from a QV may therefore involve particularly large
extrapolations. For this reason, a quantum volume region (the large grey square) is included,
alongside any volumetric background extrapolated from a QV. This quantum volume region
encompasses all quantum circuit shapes that are smaller than the largest successful QV quantum
circuit and therefore, quantum circuits within this region will have high result fidelity under weaker
assumptions.

Note
The heuristic extrapolation of the QV is not expected to always be accurate but it is nevertheless useful. This
is because any deviations between the performance of the algorithmic benchmarks and the prediction of the
volumetric background signify that, for the quantum computer in question, the performance of these
algorithms is difficult to predict from the QV alone.

QED-C claims that the benchmarking suite is designed to be readily accessible to a broad audience
of users and provides benchmarks that correspond to many well-known quantum computing
algorithms.

QED-C also predicts that this benchmarking suite is constructed to anticipate advances in
quantum computing hardware that are likely to emerge in the next five years. The benchmarking
suite is intended to be an evolving code base, accepting contributions from the quantum
computing research community.

Combinatorial optimisation is anticipated to be one of the primary use cases for quantum
computation in the coming years. Quantum computer algorithms for combinatorial optimisation
have the potential to demonstrate significant runtime performance benefits over current classical
state-of-the-art solutions.

Quantum annealers and gate-based (aka circuit-based) quantum computers solve combinatorial
optimisation problems using fundamentally different strategies: Quantum Annealing (QA) versus
Quantum Approximate Optimization Algorithm (QAOA). Both generic quantum algorithms operate
on a target quantum system (backend) to solve a problem (with input arguments) and share an
outer loop over a range of problem sizes, which encloses a second loop over a selectable number
of restarts. The primary difference between both strategies lies within the restart loop, where the
QA and QAOA solvers are applied to the input, and how the solution quality is evaluated over
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increasing execution times. With QA, convergence to a solution is performed entirely within the
Quantum Annealer.

QED-C is currently working on an enhancement of the QED-C benchmark suite for combinatorial
optimisation problem solving by means of QA and QAOA algorithms.

4.2. Algorithmic Qubits (#AQ)

The Algorithmic Qubits (#AQ) benchmark (introduced by IonQ) was inspired by the benchmarking
technique developed by QED-C (see § 4.1).

The #AQ benchmark is based on testing the performance of structured quantum circuits
corresponding to a suite of currently popular quantum algorithms. Given the current “embryonic”
state of quantum computing, it is expected that this suite will change in the future, as quantum
computing matures. Updated suites of quantum algorithms will be identified with an #AQ version
number. For #AQ version 1, six quantum algorithms from the QED-C repository have been chosen:
QFT, QPE, QAE, Hamiltonian simulation, Monte Carlo sampling and VQE.

The formal #AQ definition embraces the “foundational notion” of quantum circuits running
“approximately” n2 entangling quantum gates over n qubits. IonQ claims that such quantum
circuits are representative of “practical quantum algorithms that are of interest to the industry”
but offers no proof to substantiate this claim.

The #AQ benchmark relates to the entire quantum computing stack, including such things as
compiler optimisations that translate standard quantum gates into the native quantum gate set
of the tested quantum computer and error mitigation (the latter has to be reported, if used).
Optimisations are allowed as long as the quantum circuit executed on the quantum computer
implements the same unitary operations as submitted and optimisation is not explicitly tuned for
any specific benchmark quantum circuit.

The success of each quantum circuit run is measured by computing a classical fidelity function Fc,
as follows:

where Pideal  is the ideal output probability distribution expected from the quantum circuit without

any errors, Poutput  is the measured probability from the quantum computer and x represents each
output result.
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#AQ is defined as a single metric and is computed as follows:

The #AQ benchmark results are presented as a “volumetric plot” (see Figure 4.2 for an example),
similar to the QED-C plot (§ 4.1 Figure 4.1).

Figure 4.2: Example #AQ plot (source: IonQ)
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4.3. Q-score

The Q-score metric (developed by Atos and available under an open-source license) measures
the number of quantum bits that a quantum computer can use to solve a combinatorial
optimisation problem, the MaxCut problem, significantly better than a classical random algorithm.
In other words, it is an estimate of the largest MaxCut combinatorial optimisation problem that
presumably can be solved faster on a quantum processor than on a classical computer. The
assumption underlying this choice is that MaxCut is considered to be a good proxy for most
computationally hard problem-solving quantum algorithms.

The MaxCut problem is solved with a NISQ-compatible hybrid quantum-classical algorithm, the
Quantum Approximate Optimization Algorithm (QAOA), but any other quantum algorithm tackling
the MaxCut problem can in principle be considered as a suitable candidate.

Q-score takes into account the performance of the entire quantum software/hardware stack,
including optimisations at the algorithmic level, at the compilation stage or via noise mitigation
techniques.

Note
This means that the risk exists that one could deliberately fine-tune the quantum software to spoof the
Q-score benchmark.

The Q-score is computed as follows.

For a given size n, run the QAOA MaxCut algorithm 100 times on random Erdős-Rényi graphs29

in G(n, p = 0.5), the distribution of graphs obtained by taking an empty graph and connecting
each pair of vertices with probability 0.5.30

Compute β (n)  as follows (the rationale for this formula is far too difficult to explain here):

where C(n) is the average of the energies produced by QAOA over these 100 graphs.

The test for size n succeeds if β (n) > β⋆. The threshold β⋆, which has a value between 0 and 1,

dictates how demanding the test is: a test with β⋆ = 0 can be passed by a simple coin toss, a test

29 The Erdős-Rényi model (named after the Hungarian mathematicians Paul Erdős and Alfréd Rényi) is used for
generating random graphs where all graphs on a fixed vertex set with a fixed number of edges are equally likely.

30 These graphs are relatively dense and constitute a standard class used for benchmarks.
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with β⋆ = 1 can only be passed by a an exact solver. Atos decided for β⋆ = 0.2 (a somewhat
arbitrary choice) and for λ = 0.178 (the rationale for this choice is far too difficult to explain here).

The Q-score n* is the largest size n for which the test succeeds:

The Q-score benchmark can be run and computed on any gate-based quantum hardware and is
compatible with, although not restricted to, NISQ QPUs. An extension to analogue quantum
computers will be provided in the future.

4.4. SupermarQ

SupermarQ is quantum computer benchmark suite developed by Super.tech.

The SupermarQ suite includes the following quantum algorithms:

 Greenberger–Horne–Zeilinger (GHZ) for the generation of entanglement;

 Mermin-Bell for Bell inequality tests;

 error correction subroutines31;

 Quantum Approximate Optimization Algorithm (QAOA);

 Variational Quantum Eigensolver (VQE);

 Hamiltonian simulation.

SupermarQ uses a set of feature vectors to quantify the coverage of the selected benchmark
applications. These features indicate how each of the benchmarks will stress the quantum
computer and to what degree. The SupermarQ features are:

 quantum program communication

Quantum algorithms vary in the amount of communication needed between qubits. Within a
quantum circuit, a qubit’s “degree” is the number of other qubits it interacts with via multi-
qubit quantum gate operations.

It is often the case that physical qubit degree is much more uniform and limited than what is
required for algorithmic qubits. For quantum hardware with less than all-to-all connectivity,
the compiler may need to insert SWAP operations into the program to successfully map

31 These are measured by means of proxy applications because NISQ quantum computers do not implement error
correction.
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between the algorithmic and physical qubits. SupermarQ uses the normalised average degree
of the program’s interaction graph to quantify the communication requirements of quantum
circuits.

The program communication feature is computed by taking the average degree of the
interaction graph divided by the average degree of a complete graph with an equivalent
number of qubits. It is computed as

for an N-qubit circuit, where d(qi) is the degree of qubit qi.

The quantum program communication of sparsely connected applications will have values
near to zero while densely connected applications will have values near to one.

 critical-depth

The lifetime of the information stored across a QPU’s qubits (i.e. the coherence time) is limited.
Furthermore, quantum gate errors accumulate when quantum circuits are being executed.
Thus, it is essential that quantum circuits are of the shortest duration possible. The minimum
duration for a quantum circuit is determined by the critical path: the longest span of
dependent operations from circuit input to output.

The critical path is a valuable benchmarking metric because quantum hardware performance
must exceed specific thresholds to accommodate continuously compounding quantum gate
errors. Operations of particular interest are two-qubit interactions because two-qubit
operations dominate single-qubit operations in terms of gate error and execution time on
NISQ hardware.

The critical-depth feature gives context about how many two-qubit interactions in a program
lie along the critical path and contribute to the overall circuit depth.

Critical-depth is calculated as

where ned is the number of two-qubit interactions on the longest path that sets the circuit

depth and ne is the total number of two-qubit interactions in the circuit.

Circuits that are heavily serialised will have a critical-depth that’s close to 1.
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 entanglement-ratio

Entanglement is a critical property which gives quantum computing much of its strength as
quantum algorithms without entanglement can be efficiently emulated by classical computers.
It is a useful metric for quantum machine performance as it can be applied to computing tasks
that demonstrate quantumness.

While it is in general quite difficult to measure the precise amount of entanglement at every
point within a quantum circuit (usually requiring access to the full quantum state vector), we
can roughly capture this feature by computing the proportion of all gate operations (ng) which

are two-qubit interactions (ne):

 parallelism

The structure of different quantum algorithms allow for varying degrees of parallelisation.
Parallel operations can stress the quantum hardware because of correlated noise events known
as crosstalk that degrade program performance. Crosstalk, which is often caused by
simultaneous gate execution, is a common source of error in NISQ systems. This motivates
the development of a feature that captures how susceptible a benchmark is to degradation via
crosstalk. The parallelism feature represents this aspect by comparing the ratios of the
number of qubits (n), gates (ng), and the circuit depth (d):

Highly parallel applications fit a large number of operations into a relatively small circuit depth
and will therefore have a parallelism close to 1.

 liveness

During program execution, a qubit will either be involved in computation or it will be idle (i.e.
waiting for its next instruction). In an ideal environment, the qubit’s state would stay coherent
while idling. In reality, unwanted environmental interactions such as amplitude damping,
dephasing and correlated noise cause decoherence. The liveness feature captures aspects of
an application’s qubit status during its lifetime. It is defined as

where A is the liveness matrix defined by taking a quantum circuit and forming a matrix with
n rows equal to the number of qubits and a number of columns equal to the circuit depth d.
At every time-step of circuit execution (i.e. each column), a qubit may either be involved in an
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operation or idle, corresponding to entries of 1 or 0 in the liveness matrix, respectively. In this
way, the liveness feature gives a sense of how often the qubits are being acted upon.

The frequency of idling as 1 − L provides insight to qubit inactivity over its application lifetime.

 measurement

Qubit-specific measurement is a critical part of quantum computing. It is required to extract
information during and after a program’s execution. NISQ devices suffer from non-trivial
amounts of measurement error. In fault-tolerant quantum computing, error correcting codes
use measurement to extract entropy from a noisy quantum system. The measurement feature

focuses specifically on the mid-circuit measurement and reset operations within a quantum
program. For a quantum circuit composed of d sequential layers of gate operations (i.e. the
circuit depth), lmcm is the number of layers which contain these measurement and reset
operations.

SupermarQ is built upon the cross-platform framework SuperstaQ32, which allows an application
written in OpenQASM to be executed on multiple backends (quantum computers and emulators)
that do not support OpenQASM natively.

4.5. Quantum LINPACK

In order to mimic the success of the LINPACK benchmark on quantum computers, the problem of
solving the Quantum Linear System Problem (QLSP) is considered. Many challenging high-
dimensional problems in physics such as the simulation of a quantum many-body system, can be
formulated in terms of QLSP.

The quantum LINPACK benchmark targets directly at the performance of quantum computers for
scientific computing applications, as in the case of the LINPACK benchmark for classical
supercomputers33. The quantum LINPACK benchmark can be concisely stated as the problem of
using the quantum computer to evaluate the success probability p for a certain random matrix A.

32 SuperstaQ is a hardware-agnostic software platform that connects applications to quantum computers from IBM Q,
IonQ, Quantinuum and Rigetti Computing. SuperstaQ delivers performance gains via optimisations that span the entire
hardware/software stack.

33 The LINPACK benchmark, which first appeared in 1979 (the initial versions were based on the FORTRAN programming
language), measures the floating-point computing power of a classical computer via its performance for solving linear
systems of equations Ax = b. The input matrix A is a dense pseudo-random matrix, and there is no immediate
application associated with such a matrix. This has led to much controversy over LINPACK’s effectiveness in measuring
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In order to perform the quantum LINPACK benchmark, it would be highly inefficient to generate a
dense pseudo-random matrix A  classically and then feed it into the quantum computer using for
example QRAM. Matrices are used instead that are inherently easy to generate on quantum
computers.

The input model used by quantum LINPACK is RAndom Circuit Block-Encoded Matrix (RACBEM),
which is considered a proper generalisation of dense random matrices in the quantum setting,
suitable for linear algebra tasks. The RACBEM model, and its Hermitian version H-RACBEM are
simple to construct and allow to get access to in principle any n-qubit matrix and n-qubit
Hermitian matrix, respectively, (up to a scaling factor) by adding only one ancilla qubit.

Furthermore, the problem of solving the Quantum Linear System Problem (QLSP) is considered.
Many challenging high-dimensional problems in physics such as the simulation of a quantum
many-body system, can be formulated in terms of QLSP.

With H-RACBEM and QLSP, the quantum circuit used in the quantum LINPACK benchmark can be
designed to adapt to the qubit coupling map of almost any given gate-based quantum computer
platform. All operations can be carried out with straightforward usage of basic one-qubit gates
and CNOT gates, and there are no complex controlled unitaries involved. Due to the use of the
basic gate set and the adaptivity to the quantum computer platform’s architecture, the quantum
LINPACK benchmark does not require the explicit use of a compiler.

Together with the recently developed technique of Quantum Singular Value Transformation
(QSVT), a practical algorithm with a shallow quantum circuit is provided for performing the
quantum LINPACK benchmark on NISQ quantum computers.

4.6. QASMBench

The QASMBench benchmark developed by DoE’s Pacific Northwest National Laboratory (PNNL) is
based on the OpenQASM Intermediate Representation (IR). It consolidates a large number of
commonly used quantum routines and kernels from a variety of application domains including
chemistry, simulation, linear algebra, searching, optimisation, arithmetic, machine learning, fault
tolerance and cryptography.

QASMBench is an end-to-end package comprising a diverse variety of benchmark quantum
circuits, techniques for evaluating the performance of a quantum circuit, and metrics for
interpreting quantum circuit performance characteristics both pre- and post- transpilation.

the capability of classical computers in scientific computing applications since the very beginning. Nonetheless,
LINPACK is widely used and performance numbers are available for almost all relevant systems. The LINPACK
benchmark has also been used as the defining criterion of TOP500 supercomputers since the debut of the list in 1993.



Quantum Computer Benchmarking

Page 41 of 55

Depending on the number of qubits involved in the benchmark, QASMBench is partitioned into
three categories:

1. Small-scale, with the number of qubits ranging from 2 to 5. The purpose is to allow intensive
measures such as density matrix tomography, with limited cost.

2. Medium-scale, with the number of qubits ranging from 6 to 15, for general benchmarking
usage.

3. Large-scale, contains benchmarks with more than 15 qubits.

QASMBench benchmarking provides the following performance metrics (these metrics serve as
useful indicators on how a quantum circuit can stress a NISQ quantum computer):

 circuit width

Circuit width is defined as the number of qubits that enter the superposition state at least
once within an application’s lifespan (qubits that are measured in the interim of a quantum
circuit and re-enter superposition are only counted as one qubit towards the circuit width).

Circuit width dictates the spatial capacity required for a quantum device in order to run the
quantum circuit and is defined as

where nqactive is the number of qubits that are in-use or demanded by the circuit.

 circuit depth

Circuit depth is defined as the minimum time-evolution steps required to complete a quantum
application. Time evolution is the process of completing all gates defined at time t=tj , and

once these are completed, the circuit moves onto time t=tj+1, where the following gates are
to be processed. To keep generality and avoid the impact of low-level optimisations, circuit
depth is calculated solely using standard OpenQASM gates, i.e. the OpenQASM code is
decomposed to standard gates before counting the accurate time evolution steps required.

Circuit depth can be computed by decomposing OpenQASM code into a nq x t  matrix Q, where

Qqi,tj is the time-evolution steps to complete the gate on qubit i at time j. The sum of the
maximum time in each column is then equal to the minimum time required for a quantum
application:
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 gate density

Gate density, aka operation density, describes the occupancy of gate slots along the time-
evolution steps of a quantum circuit. As certain qubits might need to wait for other qubits in
the time evolution (caused by gate dependency), they remain idle by executing the ID gate.
Consequently, if a gate slot is empty due to dependency, it implies a lower occupancy for the
quantum hardware.

Gate density is defined as

where G1-𝑞𝑢𝑏𝑖𝑡 refers to the number of 1-qubit standard gates and G2-𝑞𝑢𝑏𝑖𝑡 refers to the
number of 2-qubit standard gates.

 retention lifespan

Retention lifespan describes the maximum lifespan of a qubit within a system, and is
motivated by the T1 coherence time and the T2 dephasing time of the quantum device.

A longer lifespan of a quantum system implies that it is more susceptible to quantum
information loss). Therefore, the qubit with the longest lifespan is taken to determine the
system’s retention lifespan. Using this metric, one can estimate if a particular circuit can be
executed in a NISQ device with high fidelity, given these T1 and T2 values.

Retention lifespan, which measures the circuit size and sensitivity to quantum system error,
is the lifespan (depth) of the qubit with the longest lifespan, which is defined as

where Di  is the lifespan (depth) of qubit i). As the circuit depth can grow substantially, a
logarithmic factor is added to shrink the scale.

 measurement density

Measurement density assesses the importance of measurements in a circuit. A higher
measurement count implies that each individual measurement might be of relatively less
importance (e.g. periodic measurement in QEC or measurement over ancilla qubits), whereas
for application with less measurements, the measurements may be of utmost importance. The
importance also increases when a measurement accounts for a wider and/or deeper circuit. A
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good example is the swap test34, where the circuit can be very large but only one measurement
is taken to report the similarity. Consequently, this measurement is extremely important to
the application.

Measurement density is defined as

where Nmeasurement is the number of measurements in an application. Since the circuit
depth/width can be large and the importance of measurement decays when circuit
depth/width keeps on increasing, a logarithmic factor is added to shrink the scale.

 entanglement variance

Entanglement variance measures the balance of entanglement across the qubits of a circuit.

Circuits with a higher entanglement variance indicate that certain qubits are more connected
than other qubits (i.e. using more 2-qubit gates such as CX than others). This metric implies
that when the circuit is mapped to a NISQ device:

- less SWAP gates are needed if those hotspot qubits are mapped to the central vertices
in the NISQ device topology. A higher entanglement variance implies a higher potential
benefit from a good logic-physical qubit mapping through quantum transpilation. If
the entanglement variance is zero, little benefit should be expected from a better
transpilation strategy;

- given that 2-qubit gates are one of the major sources introducing error, a higher
entanglement variance implies uneven error introduction among qubits.

Entanglement variance is defined as

where Gqi (2-qubits) is the number of 2-qubit gates operating on qubit i, and Gq is the average
number of 2-qubit gates operating over each qubit. As the variance can be quite large, a
logarithmic factor is added to shrink the scale. The inclusion of plus 1 is to eliminate log errors
with 0 variance.

34 The swap test is a procedure that is used to check how much two quantum states differ.
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4.7. QPack

QPack (Figure 4.3) is an open source cross-platform benchmarking suite for quantum computers
and emulators, developed by TU Delft. It is based on the testing of scalable variants of Quantum
Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
applications. Using a varied set of benchmark applications, an insight of how well a quantum
computer or its emulator performs on a general NISQ-era application can be quantitatively made.

Figure 4.3: QPack benchmark overview (source: TU Delft)

QPack is built atop the cross-platform library LibKet35, enabling the execution of the benchmark
on multiple quantum computers and quantum emulators with a single program.

Performing a QPack benchmark results in a single number benchmark score composed of four
sub-scores. These scores are  based on the evaluation of the performance characteristics different
Variational Quantum Algorithm (VQA) applications. Currently, QPack has implemented 6 VQAs, of
which 4 are QAOA-based problems (Maximum Cut, Dominating Set, Maximal Independent Set and
Traveling Salesperson Problem) and 2 are VQE-based problems (Random Diagonal Hamiltonian
and Ising Chain).

The following design choices were made for the QPack benchmark score:

 the score reflects application-level performance of both quantum computers and quantum
emulators;

35 LibKet is a lightweight expression template library that allows developing quantum algorithms as quantum compiling
platform-agnostic generic expressions and execute them on different quantum emulators and quantum computers
without changing the program code.
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 the score is a composite of measurement data of multiple quantum applications;

 the score is a single number (but may be split up into sub-scores);

 the score is proportional to performance, i.e. a higher score means higher performance;

 the score is scalable, i.e. it has no upper limit;

 the score does not become too abstract from the data it is based on;

 sub-scores are balanced, such that one sub-score does not become dominant in the overall
score.

The QPack benchmark score is structured as shown in Figure 4.4.

Figure 4.4: QPack benchmark score structure (source: TU Delft)

The four QPack benchmark sub-scores are:

1. capacity: the number of qubits that a quantum computer is able to run within a margin of the
desired output accuracy;

2. scalability: relates to the runtime trend of a quantum computer with growing circuit size (even
though a quantum computer has a certain number of qubits to work with, its qubit topology
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could make the implementation of larger circuits less efficient as mapping and transpiling
optimisation becomes more complex)36;

3. accuracy: output state deficiencies due to gate noise and qubit decoherence and relaxation
are compared to the ideal ones (as generated by the QuEST quantum emulator37);

4. runtime: the time it takes to execute a quantum circuit (for the runtime score, it is assumed
that quantum computers can execute quantum gates in parallel where possible).

The runtime sub-score is purely based on the execution time of the quantum circuit and does not
include other service overhead like optimisation, transpiling and scheduling. Although this sub-
score gives an insight into the performance of the actual quantum hardware, it does not reflect
all run time factors of the system. Overhead is a major component in quantum job runtime and is
therefore also contributing to the run time. Since quantum providers generally only return the
quantum circuit execution time in their response, it was chosen not to include the overhead
component in the current version of QPack. However, because the impact of this overhead has
such an significant influence on quantum runtime, the next version of QPack should include it.

For the benchmark sub-scores, a distinction is made between pure scores and mapped scores.
The pure scores are the values to which the measured data is transformed into a quantitative
score metric. The mapped scores take these pure scores and map them to be proportional to
performance and be balanced against the other sub-scores.

After a mapped and balanced sub-score has been defined for each problem in the QPack suite,
the sub-scores for each problem are combined into an overall score. The sub-score for each
performance category is computed as the arithmetic mean over all problems. Figure 4.5 shows an
example of the scores obtained in this way.

Computing the sub-scores for a single quantum computer and displaying them like in Figure 4.5
gives a good insight of the performance of a single quantum computer, but makes comparison of
performance differences between multiple quantum computers cumbersome. A better way of
visualising performance differences between multiple quantum computers can be achieved with
radar plots as shown in Figure 4.6. Using this visualisation, the overall score for a given quantum
computer is given as a single metric by taking the area of the four-sided region in its radar plot,
thus making it possible to easily compare different quantum computers.

36 This metric relates to the “scale” aspect of a quantum computer’s performance and does not relate to the “scalability”
of the quantum computing platform.

37 The Quantum Exact Simulation Toolkit (QuEST) is a high performance emulator of quantum circuits, quantum state
vectors and density matrices. QuEST uses multithreading, GPU acceleration and distribution to run fast on laptops,
desktops and networked supercomputers.
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Figure 4.5: Example of QPack benchmark sub-scores for a single system (source: TU Delft)

Figure 4.6: Example of QPack benchmark overall scores for multiple systems (source: TU Delft)
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4.8. QuantMark

Variational Quantum Eigensolver (VQE) is a promising hybrid quantum/classical algorithm that
runs on NISQ quantum computers.

A VQE algorithm has many components that are interchangeable. As such, different
implementations of the algorithm are based on different choices for these components. This
makes it very difficult to determine whether any performance difference between performance
test results is due to an algorithm difference or another type of difference. Thus, it is very difficult
to compare reported performance test results.

To address this issue, researchers from the University of Helsinki developed the QuantMark
benchmark38, which:

 can show not only the precision but also the accuracy of a particular variant of the VQE
algorithm;

 makes it easy to compare the performance of different variants of the VQE algorithm;

 makes it easy to replicate benchmark results, for example to enable evaluation of expected
performance improvements for  a particular variant of  the VQE algorithm.

4.9. Variational Quantum Factoring (VQF)

Zapata Computing Holding Inc. proposes to benchmark NISQ Quantum computers with Variational
Quantum Factoring (VQF) and fermionic simulation quantum algorithms.

VQF solves the integer factoring problem with variational quantum solutions such as VQE and
QAOA.

The fermionic simulation includes the 1D Fermi-Hubbard model, which is representative of
chemistry and material science problem solutions. Its analytical solution is known and can be
easily extended into a 2D structure, which can be converted to a quantum algorithm. The metric
for this benchmark is the effective fermionic length of the device, which can reflect the
performance of the entire device.

38 QuantMark is still under active development.
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4.10. Other application-level benchmarks

Various other application-level benchmarks have been developed, including:

 Agnostiq created a benchmark dedicated to optimising financial portfolios using the Quantum
Approximate Optimization Algorithm (QAOA).

 DoE’s Oak Ridge National Laboratory (ORNL) proposed a benchmark for chemical simulation.

 New-York State University scientists created a benchmark related to Grover’s search
algorithm.
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Appendix B - Acronyms and abbreviations

1D 1-Dimensional

1Q 1-Qubit quantum gate

2D 2-Dimensional

2Q 2-Qubit quantum gate

#AQ number of Algorithmic Qubits

AI Artificial Intelligence

aka also known as

API Application Programming Interface

AQ Algorithmic Qubits

Avg Average

BAS Bars and Stripes

BBN Bolt, Beranik and Newman
bit binary digit

c communication
C Clifford gate

Caltech California Institute of Technology

CB Cycle Benchmarking

Cirq Circuit
CLOPS Circuit Layer Operations Per Second

CNOT Controlled NOT gate

CPU Central Processing Unit

CX Controlled X gate

d depth

D Depth

DARPA Defense Advanced Research Projects Agency

DD Dynamical Decoupling

DDQCL Data-Driven Quantum Circuit Learning

DoE Department of Energy
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DSP Dominating Set Problem

E Entanglement ratio

e.g. exempli gratia

EDP Electronic Data Processing

EPLG Error-Per-Layered Gate

etc. et cetera

FD Fermionic Depth

FORTRAN FORmula TRANslation

FTQC Fault-Tolerant Quantum Computer

GBS Gaussian Boson Sampling

GHZ Greenberger–Horne–Zeilinger

GPU Graphics Processing Unit

GST Gate Set Tomography

H Hadamard gate

H-RACBEM Hermitian RACBEM

HOG Heavy Output Generation

HRL Hughes Research Laboratories

i.e. id est

IBM International Business Machines

IC Ising Chain

ID Identity gate

IEEE Institute of Electrical and Electronics Engineers

Inc. Incorporated

IR Intermediate Representation

J Joule

L Liveness

lab laboratory

LF Layer Fidelity
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log logarithm

logarithmic

M Measurement

max maximum

MaxCut Maximum Cut

MCP Maximum Cut Problem

MIS Maximal Independent Set

NISQ Noisy Intermediate-Scale Quantum

NOREA Nederlandse Orde van Register EDP-Auditors

npj Nature Partner Journals

O big O notation

OpenQASM Open Quantum Assembly language

ORNL Oak Ridge National Laboratory

P Parallelism

PNNL Pacific Northwest National Laboratory

polylog polylogarithmic

Q Quality

Quantum

QA Quantum Annealing

QAB Quantum Algorithm Benchmarking

QAE Quantum Amplitude Estimation

QAOA Quantum Approximate Optimization Algorithm

QASMBench Quantum Assembly Benchmark

qBAS quantum Bars and Stripes

QBI Quantum Benchmarking Integration

QCaaS Quantum Computing-as-a-Service

QCP Quantum-Classical Processing

QCVV Quantum Characterization, Verification, and Validation

QEC Quantum Error Correction

QED-C Quantum Economic Development Consortium

QEM Quantum Error Mitigation
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QFT Quantum Fourier Transform

Qiskit Quantum Information Software Kit

QLSP Quantum Linear System Problem

QMI Quantum Machines Inc.

QML Quantum Machine Learning

QPE Quantum Phase Estimation

QPT Quantum Process Tomography

QPU Quantum Processor Unit

QRAM Quantum Random-Access Memory

QSDK Quantum Software Development Kit

QST Quantum State Tomography

QSVT Quantum Singular Value Transformation

qubit quantum bit

QuEST Quantum Exact Simulation Toolkit

QV Quantum Volume

Quantum Volumetric

QV-n Quantum Volumetric class n
QVM Quantum Virtual Machine

RACBEM RAndom Circuit Block-Encoded Matrix

RB Randomized Benchmarking

RCS Random Circuit Sampling

RFP Request For Proposal

RH Random Hamiltonian

RPE Robust Phase Estimation

s second

SNL Sandia National Laboratories

SPAM State Preparation And Measurement

SU Special Unitary

SU(2) Special Unitary transformations applicable to 1 qubit

SU(4) Special Unitary transformations applicable to 2 qubits

SU(n2) Special Unitary transformations applicable to n qubits

SWAP Size, Weight, Application and Power
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TSP Traveling Salesman Problem

TU Technische Universiteit

TUD Technische Universiteit Delft

U Unitary gate

UC University of California

UK United Kingdom

uni uniform

URB Universal Randomized Benchmarking

USA United States of America

USC University of Southern California

VB Volumetric Benchmark

VQA Variational Quantum Algorithm

VQC Variational Quantum Circuit

VQE Variational Quantum Eigensolver

VQF Variational Quantum Factoring

W Width

X Pauli X gate

XEB Cross-Entropy Benchmarking

XRB Extended Randomized Benchmarking

Y Pauli Y gate

Z Pauli Z gate
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